132 research outputs found

    Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal

    Get PDF
    This research focuses on understanding biosorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. A new composite biosorbent has been prepared by coating chitosan onto acid treated oil palm shell charcoal (AOPSC). Chitosan loading on the AOPSC support is about 21% by weight. The shape of the adsorbent is nearly spherical with particle diameter ranging 100~150 \u3bcm. The adsorption capacity of the composite biosorbent was evaluated by measuring the extent of adsorption of chromium metal ions from water under equilibrium conditions at 25\ub0C. Using Langmuir isotherm model, the equilibrium data yielded the following ultimate capacity values for the coated biosorbent on a per gram basis of chitosan: 154 mg Cr/g. Bioconversion of Cr (VI) to Cr (III) by chitosan was also observed and had been shown previously in other studies using plant tissues and mineral surfaces. After the biosorbent was saturated with the metal ions, the adsorbent was regenerated with 0.1 M sodium hydroxide. Maximum desorption of the metal takes place within 5 bed volumes while complete desorption occurs within 10 bed volumes. Details of preparation of the biosorbent, characterization, and adsorption studies are presented. Dominant sorption mechanisms are ionic interactions and complexation

    Microencapsulation of amino acids for prawn feed additives

    Get PDF
    This study investigated the microencapsulation methods developed in food industry to make a new form of prawn feed additives. Lysine (crystalline amino acid), one of the important substances in the prawn diet formulation was encapsulated by three potential wall polymers which were dextrins, starch and β-cyclodextrin. Dextrins and starch were abandoned for further testings due to their high viscosity and cold water insoluble microcapsules properties. The molecular inclusion of β-cyclodextrin with lysine however, had been successfully carried out and the physical properties of the capsules and leaching rate were measured as a function of coating technique (lysine:β-cyclodextrin, with ratios of 1:1, 1:2 and 1:3 were prepared). Under the microscope, sparkling particles bounded inside the irregular microcapsules were observed when lysine was encapsulated by β cyclodextrin and this had indicated that lysine was successfully incorporated. Moreover, analysis in UV spectrophotometer had also further confirmed this remark

    Surface Plasmon Resonance Sensing Detection of Mercury and Lead Ions Based on Conducting Polymer Composite

    Get PDF
    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb2+ and Hg2+ ions. The Pb2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb2+ compared to Hg2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system

    Chemical and structural changes of pretreated empty fruit bunch (EFB) in ionic liquid-cellulase compatible system for fermentability to bioethanol

    Get PDF
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process

    Quantification of selected steroid hormones (17b-Estradiol and 17a-Ethynylestradiol) in wastewater treatment plants in Klang Valley (Malaysia)

    Get PDF
    Steroid estrogens, such as 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) are potent and were categorized as "Watch List" in Directive 2013/39/EU because of their potential risks to aquatic environment. Commercialized enzyme-linked immunosorbent assay (ELISA) kits have been used to quantify steroid estrogens in wastewater samples due to their simplicity, rapid, cost-effectiveness, and validated assays. Hence, this study aims to determine the occurrence and removal of steroid hormones in Malaysian wastewater treatment plants (WWTPs) by ELISA, to identify the association of removal efficiency (E2 and EE2) with respect to WWTPs operating conditions, and to assess the potential risks of steroid estrogens to aquatic environment and human. Results showed E2 concentration ranged from 88.2 ± 7.0 ng/L to 93.9 ± 6.9 ng/L in influent and 35.1 ± 17.3 ng/L to 85.2 ± 7.6 ng/L in effluent, with removal of 6.4%-63.0%. The EE2 concentration ranged from 0.2 ± 0.2 ng/L to 4.9 ± 6.3 ng/L in influent and 0.02 ± 0.03 ng/L to 1.0 ± 0.8 ng/L in effluent, with removal of 28.3-99.3%. There is a correlation between EE2 removal with total suspended solid (TSS) and oxidation reduction potential (ORP), and was statistically significant. Despite the calculated estrogenic activity for E2 and EE2 was relatively high, dilution effects could lower estrogenic response to aquatic environment. Besides, these six selected WWTPs have cumulative RQ values below the allowable limit, except WWTP 1. Relatively high precipitation (129-218 mm) could further dilute estrogens concentration in the receiving river. These outputs can be used as quantitative information for evaluating the occurrence and removal of steroid estrogens in Malaysian WWTPs

    Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent:characterisation, kinetic and isotherm studies

    Get PDF
    Sweet potato peels was used for the removal of Cd (II) from aqueous solutions. The residue was characterised using SEM, EDX, XRF, N2 BET, TGA and ATR-FTIR. Sorption of Cd (II) was carried out by varying pH, contact time and initial ion concentration at 25 °C and the results showed a strong dependence of the ion removal on the adsorbate pH with optimum observed at pH 7. Kinetics of Cd (II) sorption indicates optimum time of 180 min and the removal of Cd (II) occurred via a fast initial uptake. This was modelled using the pseudo first, pseudo-second and intraparticle diffusion models. The pseudo-first order gave a better description of the uptake kinetics than the pseudo-second order model with an r2 value of 0.99. The intraparticle-diffusion model showed that sorption had multi-linear steps indicating that the intraparticle-diffusion is not the only rate controlling step in Cd (II) sorption. FTIR analysis of the PTPS before and after adsorption of Cd (II) indicates that some functional groups such as hydroxyl, carbonyl and carboxylate groups may be involved in metal ion sorption. Isotherm modelling of Cd (II) sorption was carried out using the Langmuir and Freundlich isotherms using a non-linear optimisation. The Langmuir isotherm gave a better fit for Cd (II) sorption and maximum loading capacity (qmax) was 18 mg g−1 with an isotherm constant of 5.21 × 10−3 l mg−1 and r2 value of 0.99 at 25 °C. Hence, the PTPS residue was found to be a promising adsorbent for Cd (II) removal from aqueous streams

    The environmental impacts of palm oil in context

    Get PDF
    Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils, and in particular palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for 40% of the current global annual demand for vegetable oil as food, animal feed, and fuel (210 million tons (Mt)), but planted oil palm covers less than 5-5.5% of total global oil crop area (ca. 425 Mha), due to oil palm’s relatively high yields5. Recent oil palm expansion in forested regions of Borneo, Sumatra, and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm’s role in deforestation. Oil palm expansion’s direct contribution to regional tropical deforestation varies widely, ranging from 3% in West Africa to 47% in Malaysia. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions, and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops, and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 20509. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation, and livelihoods. Our review highlights that, although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. 65 Greater research attention needs to be given to investigating the impacts of palm oil production 66 compared to alternatives for the trade-offs to be assessed at a global scale

    Microwave-assisted hydrothermal treatments for biomass valorisation : a critical review

    Get PDF
    The sustainable conversion of biomass into biofuels, chemicals and biomaterials has gained increasing attention to ensure the well-being of present and future generations. Among the different technologies available to date for the valorisation of biomass, microwave-assisted hydrothermal conversion has recently appeared as a state-of-the-art technology, capable of furnishing a wide range of reaction products for the energy, pharmaceutical and chemistry sectors. This emerging technology combines the inherent benefits of microwave heating and the sustainable features of biomass hydrothermal valorisation. Herein, for the first time, this critical review summarises and analyses all the work conducted to date on the use of microwave-assisted hydrothermal processes (including microwave-assisted carbonisation, liquefaction and treatment/hydrolysis) for the conversion of biomass into hydrochar, bio-crude (bio-oil) and valuable chemicals. In particular, this work has put together vital information addressing the influences of the reaction conditions (temperature, time, amount and type of catalyst, biomass loading and type, and microwave power) on the yields and key properties of the reaction products. The relationships between these processing parameters and the chemical transformations involved in the processes (hydrolysis, dehydration, decarboxylation, condensation and re-polymerisation) have been described in detail, and reliable comparisons have also been established between microwave-assisted and conventional hydrothermal technologies when data were available. As a result, this critical review collects essential information on the use of this cutting-edge, recently appeared microwave-assisted hydrothermal technology, and paves the way for its expansion and future development and commercialisation

    A Review of Microwave-Assisted Reactions for Biodiesel Production

    No full text
    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective
    corecore