1,887 research outputs found

    Simulation of Light Antinucleus-Nucleus Interactions

    Full text link
    Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-He3 and anti-He4) are observed by collaborations at the LHC and RHIC accelerators. Some cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To support the experimental studies of the anti-nuclei a Monte Carlo simulation of anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The implementation combines practically all known theoretical approaches to the problem of antinucleon-nucleon interactions.Comment: 8 pages, 5 figure

    Quality assurance for the query and distribution systems of the RCSB Protein Data Bank

    Get PDF
    The RCSB Protein Data Bank (RCSB PDB, www.pdb.org) is a key online resource for structural biology and related scientific disciplines. The website is used on average by 165 000 unique visitors per month, and more than 2000 other websites link to it. The amount and complexity of PDB data as well as the expectations on its usage are growing rapidly. Therefore, ensuring the reliability and robustness of the RCSB PDB query and distribution systems are crucially important and increasingly challenging. This article describes quality assurance for the RCSB PDB website at several distinct levels, including: (i) hardware redundancy and failover, (ii) testing protocols for weekly database updates, (iii) testing and release procedures for major software updates and (iv) miscellaneous monitoring and troubleshooting tools and practices. As such it provides suggestions for how other websites might be operated

    Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    Get PDF
    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands

    Strings in AdS_4 x CP^3: finite size spectrum vs. Bethe Ansatz

    Full text link
    We compute the first curvature corrections to the spectrum of light-cone gauge type IIA string theory that arise in the expansion of AdS4×CP3AdS_4\times \mathbb{CP}^3 about a plane-wave limit. The resulting spectrum is shown to match precisely, both in magnitude and degeneration that of the corresponding solutions of the all-loop Gromov--Vieira Bethe Ansatz. The one-loop dispersion relation correction is calculated for all the single oscillator states of the theory, with the level matching condition lifted. It is shown to have all logarithmic divergences cancelled and to leave only a finite exponentially suppressed contribution, as shown earlier for light bosons. We argue that there is no ambiguity in the choice of the regularization for the self-energy sum, since the regularization applied is the only one preserving unitarity. Interaction matrices in the full degenerate two-oscillator sector are calculated and the spectrum of all two light magnon oscillators is completely determined. The same finite-size corrections, at the order 1/J, where JJ is the length of the chain, in the two-magnon sector are calculated from the all loop Bethe Ansatz. The corrections obtained by the two completely different methods coincide up to the fourth order in λ=λ/J2\lambda' =\lambda/J^2. We conjecture that the equivalence extends to all orders in λ\lambda and to higher orders in 1/J.Comment: 32 pages. Published version; journal reference adde

    Study of cosolvent-induced α-chymotrypsin fibrillogenesis: Does protein surface hydrophobicity trigger early stages of aggregation reaction?

    Get PDF
    The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in α-chymotrypsin-based experimental system. © 2009 Springer Science+Business Media, LLC

    Production and characterisation of recombinant forms of human pulmonary surfactant protein C (SP-C): Structure and surface activity

    Get PDF
    Surfactant protein C (SP-C) is an essential component for the surface tension-lowering activity of the pulmonary surfactant system. It contains a valine-rich α helix that spans the lipid bilayer, and is one of the most hydrophobic proteins known so far. SP-C is also an essential component of various surfactant preparations of animal origin currently used to treat neonatal respiratory distress syndrome (NRDS) in preterm infants. The limited supply of this material and the risk of transmission of infectious agents and immunological reactions have prompted the development of synthetic SP-C-derived peptides or recombinant humanized SP-C for inclusion in new preparations for therapeutic use. We describe herein the recombinant production in bacterial cultures of SP-C variants containing phenylalanines instead of the palmitoylated cysteines of the native protein, as fusions to the hydrophilic nuclease A (SN) from Staphylococcus aureus. The resulting chimerae were partially purified by affinity chromatography and subsequently subjected to protease digestion. The SP-C forms were recovered from the digestion mixtures by organic extraction and further purified by size exclusion chromatography. The two recombinant SP-C variants so obtained retained more than 50% α-helical content and showed surface activity comparable to the native protein, as measured by surface spreading of lipid/protein suspensions and from compression π-A isotherms of lipid/protein films. Compared to the protein purified from porcine lungs, the recombinant SP-C forms improved movement of phospholipid molecules into the interface (during adsorption), or out from the interfacial film (during compression), suggesting new possibilities to develop improved therapeutic preparations

    Effect of HLA DR epitope de-immunization of Factor VIII \u3ci\u3ein vitro\u3c/i\u3e and \u3ci\u3ein vivo\u3c/i\u3e

    Get PDF
    T cell-dependent development of anti-Factor VIII (FVIII) antibodies that neutralize FVIII activity is a major obstacle to replacement therapy in hemophilia A. To create a less immunogenic therapeutic protein, recombinant FVIII can be modified to reduce HLA binding of epitopes based on predicted anchoring residues. Here, we used immunoinformatic tools to identify C2 domain HLA DR epitopes and predict site-specific mutations that reduce immunogenicity. Epitope peptides corresponding to original and modified sequences were validated in HLA binding assays and in immunizations of hemophilic E16 mice, DR3 and DR4 mice and DR3 × E16 mice. Consistent with immunoinformatic predictions, original epitopes are immunogenic. Immunization with selected modified sequences lowered immunogenicity for particular peptides and revealed residual immunogenicity of incompletely de-immunized modified peptides. The stepwise approach to reduce protein immunogenicity by epitope modification illustrated here is being used to design and produce a functional full-length modified FVIII for clinical use

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
    corecore