126 research outputs found

    Using natural means to reduce surface transport noise during propagation outdoors

    Get PDF
    This paper reviews ways of reducing surface transport noise by natural means. The noise abatement solutions of interest can be easily (visually) incorporated in the landscape or help with greening the (sub)urban environment. They include vegetated surfaces (applied to faces or tops of noise walls and on building façades and roofs ), caged piles of stones (gabions), vegetation belts (tree belts, shrub zones and hedges), earth berms and various ways of exploiting ground-surface-related effects. The ideas presented in this overview have been tested in the laboratory and/or numerically evaluated in order to assess or enhance the noise abatement they could provide. Some in-situ experiments are discussed as well. When well-designed, such natural devices have the potential to abate surface transport noise, possibly by complementing and sometimes improving common (non-green) noise reducing devices or measures. Their applicability strongly depends on the available space reserved for the noise abatement and the receiver position

    Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    Get PDF
    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers (Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Monitorin

    Potencial de economia de energia elétrica através do uso da luz natural e da ventilação híbrida em edifícios comerciais em Florianópolis

    Get PDF
    O objetivo deste estudo é estimar o potencial de economia de energia elétrica com o uso da luz natural integrada ao sistema de iluminação artificial e a utilização da ventilação híbrida em edifícios comerciais localizados em Florianópolis, SC. O trabalho foi baseado em simulações computacionais nos programas EnergyPlus e Daysim. Foram simulados modelos de ambientes de edificações comerciais, com três geometrias, três dimensões de sala por geometria, dez áreas de janela por modelo e quatro orientações. Os modelos foram examinados por meio de quatro estudos de caso. No Caso 1 (referência), a edificação opera com sistemas de iluminação e de condicionamento artificiais; no Caso 2, ocorre a integração da iluminação natural com a artificial, com condicionamento artificial; já no Caso 3, utilizam-se a ventilação híbrida e a iluminação artificial; no Caso 4, adotam-se a iluminação natural integrada com a artificial e a ventilação híbrida. Os consumos de eletricidade do Caso 1 foram comparados com os demais casos. Assim, foi estimado o potencial de economia de energia elétrica gerado pelo uso da luz natural e ventilação híbrida. Conclui-se que a utilização da iluminação natural e da ventilação híbrida em edificações comerciais localizadas em Florianópolis apresenta potencial de economia de energia elétrica de até 64,9% e que essas estratégias podem ser utilizadas para aumentar a eficiência energética desse tipo de edificação

    Impacts on cooling energy consumption due to the UHI and vegetation changes in Manchester, UK

    Get PDF
    Climate change projections estimate a rise of approximately 3°C by the 2080s for most of the UK (medium emissions scenario at 50% probability level, 1961-1990 baseline). Warming is a particular concern for urban areas due to urban densification and the Urban Heat Island (UHI) effect. To counteract the UHI, one adaptation strategy for urban areas is increasing the proportion of greenspace, such as parks, street tree plantings, and green roofs. This research employed an interdisciplinary approach to measure and model fine-scale microclimate changes due to greenspace and explore the implications for building energy demand in Manchester, UK. Both the modelled and measured microclimate data informed development of a series of weather files for building energy modelling of three commercial building types. For a scenario adding 5% mature trees to the urban case study, the combination of microclimate modelling and data analysis estimated a maximum hourly air temperature reduction of nearly 1.0°C under peak UHI conditions and wind speed reductions up to 1.0 m/s. These results were used to change the weather files in the building energy modelling, which estimated a reduction of 2.7% in July chiller energy due to the combination of reduced UHI peak hours and eight additional trees shading a three-storey shallow plan building. Energy savings increased to 4.8% under a three-day period of peak UHI conditions.</p

    Modeling Košice Green Roofs Maps

    No full text

    Change-over natural and mechanical ventilation system energy consumption in single-family buildings

    No full text
    The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change–over hybrid system. The analysis was prepared on the assumption that the air–to–water heat pump is the heat source for the buildings
    corecore