192 research outputs found

    Microorganisms of food ice cubes and their transfer to drinks

    Get PDF
    The present work was carried out to investigate the microbiological characteristics of the ice cubes produced at different levels: 1) home-made (HM) from domestic freezers; 2) produced by ice machines in bars and pubs (BP); 3) produced by ice industries (IN). BP samples were collected from the box stocks. HM and BP samples were transferred into sterile stomacher bags. IN samples were provided in the manufacturers\u2019 plastic bags. Samples were transported into thermal insulated boxes. Five samples per each production level, forming a total of 15 samples (HM1-HM5, BP1-BP5, IN1-IN5), were collected in duplicate in two consecutive months. Each ice sample was thawed in 1 L sterile Dhuram\u2019s bottle at room temperature and subjected to the membrane filtration analyses. Total mesophilic microorganisms (TMM), total psychrotrophic microorganisms (TPM), pseudomonads, members of the Enterobacteriaceae family, coliforms, enterococci, yeasts and moulds were investigated. When the amounts of colonies were uncountable, 1 mL of sample was directly inoculated into agar media. All results were expressed as colony forming units (CFU)/100 mL of thawed ice. TMM were in the range 100-9600, 312-6300 and 130-4000 for HM, BP and IN samples, respectively. Three HM and two IN samples were negative for the presence of TPM. The highest concentration (960) was found for IN2. Pseudomonads were detected in all HM samples but the highest levels were registered for BP1 (390) and IN2 (384). Except IN4, Enterobacteriaceae were found in all samples. All INs and 4 HM samples did not displayed coliforms. By contrast, they were hosted in all BP samples, ranging from 1 to 184. Enterococci were never found in HM samples, but detected in two INs and 3 BPs. Except IN1, moulds were always registered, while yeasts developed from the majority of HM and IN samples and two BP samples. The colonies representative for the different morphologies were randomly picked up from plates, purified to homogeneity and subjected to a phenotypic grouping. Yeasts and bacteria were subjected to the genetic identification by sequencing of D1/D2 domains of 26S rRNA gene and partial sequencing of 16S rRNA gene, respectively, while moulds were identified phenotypically. So far, the species mostly represented among bacteria, as evaluated only by the forward 16S rRNA gene sequence, were Bacillus spp., Pseudomonas spp., Pantoea spp., Pantoea agglomerans, Enterococcus faecium, and Agrobacterium tumefaciens. Candida intermedia and Pichia guillermondii were identified among yeasts and Penicillium spp. among moulds. The work was also aimed to monitor the microbial transfer from ice to humans through drinks. To this purpose, each microorganism was inoculated singly in sterile mineral water to produce contaminated ice cubes using disposable ice cube trays. Inoculums occurred at the highest concentrations found in the ice cubes analysed. The concentrations of the microorganisms were followed in six different types of drinks, including alcoholic (vodka and whiskey), moderate alcoholic (Martini), sparkling (tonic water), sugary (peach tea) and sugary sparkling (coke) drinks. In order to simulate the contamination of drinks by ice during consumption, six ice cubes (corresponding to 60 mL) containing each microorganism were added to 100 mL of each drink (simulating a bar administration) in sterile cups and, after 1 h, the entire volume was analysed by membrane filtration. A physiological solution was used as control. So far, the tests were performed with Penicillium spp. and P. agglomerans. Penicillium was not influenced by the different drinks, since, after 1 h, its level did not change. Regarding P. agglomerans, which is an opportunistic pathogen causing urinary tract infections, its concentration in peach tea was superimposable to that found in physiological solution, while it decreased in all other drinks. In particular, the concentration of this bacterium almost halved in vodka, coke and tonic water, diminished consistently in Martini and completely disappeared in whiskey. Experimentations are in progress to determine the behaviour of the other microorganisms in these systems. These data evidenced that the worst hygienic characteristics were found in BP samples, while the majority of ice cubes produced in specialized industries were characterized by acceptable microbiological parameters. This work indicated that the concentration of P. agglomerans is reduced by alcohol and CO2, but further in vivo assays are necessary to better clarify their role on the other ice microorganisms

    The Peripheral Arterial disease study (PERART/ARTPER): prevalence and risk factors in the general population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The early diagnosis of atherosclerotic disease is essential for developing preventive strategies in populations at high risk and acting when the disease is still asymptomatic. A low ankle-arm index is a good marker of vascular events and may be diminished without presenting symptomatology (silent peripheral arterial disease). The aim of the study is to know the prevalence and associated risk factors of peripheral arterial disease in the general population.</p> <p>Methods</p> <p>We performed a cross-sectional, multicentre, population-based study in 3786 individuals >49 years, randomly selected in 28 primary care centres in Barcelona (Spain). Peripheral arterial disease was evaluated using the ankle-arm index. Values < 0.9 were considered as peripheral arterial disease.</p> <p>Results</p> <p>The prevalence (95% confidence interval) of peripheral arterial disease was 7.6% (6.7-8.4), (males 10.2% (9.2-11.2), females 5.3% (4.6-6.0); <it>p </it>< 0.001).</p> <p>Multivariate analysis showed the following risk factors: male sex [odds ratio (OR) 1.62; 95% confidence interval 1.01-2.59]; age OR 2.00 per 10 years (1.64-2.44); inability to perform physical activity [OR 1.77 (1.17-2.68) for mild limitation to OR 7.08 (2.61-19.16) for breathless performing any activity]; smoking [OR 2.19 (1.34-3.58) for former smokers and OR 3.83 (2.23-6.58) for current smokers]; hypertension OR 1.85 (1.29-2.65); diabetes OR 2.01 (1.42-2.83); previous cardiovascular disease OR 2.19 (1.52-3.15); hypercholesterolemia OR 1.55 (1.11-2.18); hypertriglyceridemia OR 1.55 (1.10-2.19). Body mass index ≥25 Kg/m<sup>2 </sup>OR 0.57 (0.38-0.87) and walking >7 hours/week OR 0.67 (0.49-0.94) were found as protector factors.</p> <p>Conclusions</p> <p>The prevalence of peripheral arterial disease is low, higher in males and increases with age in both sexes. In addition to previously described risk factors we found a protector effect in physical exercise and overweight.</p

    HacA-Independent Functions of the ER Stress Sensor IreA Synergize with the Canonical UPR to Influence Virulence Traits in Aspergillus fumigatus

    Get PDF
    Endoplasmic reticulum (ER) stress is a condition in which the protein folding capacity of the ER becomes overwhelmed by an increased demand for secretion or by exposure to compounds that disrupt ER homeostasis. In yeast and other fungi, the accumulation of unfolded proteins is detected by the ER-transmembrane sensor IreA/Ire1, which responds by cleaving an intron from the downstream cytoplasmic mRNA HacA/Hac1, allowing for the translation of a transcription factor that coordinates a series of adaptive responses that are collectively known as the unfolded protein response (UPR). Here, we examined the contribution of IreA to growth and virulence in the human fungal pathogen Aspergillus fumigatus. Gene expression profiling revealed that A. fumigatus IreA signals predominantly through the canonical IreA-HacA pathway under conditions of severe ER stress. However, in the absence of ER stress IreA controls dual signaling circuits that are both HacA-dependent and HacA-independent. We found that a ΔireA mutant was avirulent in a mouse model of invasive aspergillosis, which contrasts the partial virulence of a ΔhacA mutant, suggesting that IreA contributes to pathogenesis independently of HacA. In support of this conclusion, we found that the ΔireA mutant had more severe defects in the expression of multiple virulence-related traits relative to ΔhacA, including reduced thermotolerance, decreased nutritional versatility, impaired growth under hypoxia, altered cell wall and membrane composition, and increased susceptibility to azole antifungals. In addition, full or partial virulence could be restored to the ΔireA mutant by complementation with either the induced form of the hacA mRNA, hacAi, or an ireA deletion mutant that was incapable of processing the hacA mRNA, ireAΔ10. Together, these findings demonstrate that IreA has both HacA-dependent and HacA-independent functions that contribute to the expression of traits that are essential for virulence in A. fumigatus

    Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants

    Get PDF
    Background:Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. Methods:We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. Results: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. Conclusions:These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs

    Association of Forced Vital Capacity with the Developmental Gene <i>NCOR2</i>

    Get PDF
    Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 chi

    Genome-wide association analysis identifies six new loci associated with forced vital capacity

    Get PDF
    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore