147 research outputs found

    The Deuterium to Hydrogen Ratio in the Water that Formed the Yellowknife Bay Mudstones in Gale Crater

    Get PDF
    A suite of isotope ratios of light elements in the present martian atmosphere (13C/12C, 15N/14N, 18O/16O, 38Ar/36Ar, and D/H) are all substantially enriched in the heavy element suggesting atmospheric loss to space over the past billions of years with preferential loss of the lighter isotope from each pair. In situ measurements from MSL's Sample Analysis at Mars (SAM) instrument [e.g. 1,2,3] have considerably refined previous measurements from the Viking mass spectrometers [e.g. 4], from remote spectroscopic observations [e.g. 5,6], and from martian meteorite studies [e.g. 7,8]. The persistence of habitable environments such as the ancient Yellowknife Bay lake recently revealed by measurements from the Curiosity rover [9] depends on the surface temperatures and the duration of an atmosphere thicker than that at present. Current and planned measurements from orbit with the Mars Express and MAVEN missions respectively intend to study the processes of atmospheric escape including solar wind interaction, sputtering, thermal escape, and dissociative recombination, and determine or refine the current rate of atmospheric loss caused by these and other mechanisms. The goal of these programs is to understand the physical processes sufficiently well so that robust extrapolations over the past billions of years can be made D/H is measured by both the Tunable Laser Spectrometer (TLS) and the Quadrupole Mass Spectrometer (QMS) of the SAM suite. to predict the atmospheric and surface conditions on early Mars. However, the study of the history of martian atmospheric evolution will be greatly facilitated if we are able to also directly measure the isotopic composition of volatiles captured in rocks that are representative of the ancient atmosphere. To date, D/H is one of the most promising candidates for this study since water is the most abundant volatile thermally released from the Yellowknife Bay phylosilicates discovered by the SAM and CheMin experiments of MSL and it

    Ground-State of Charged Bosons Confined in a Harmonic Trap

    Full text link
    We study a system composed of N identical charged bosons confined in a harmonic trap. Upper and lower energy bounds are given. It is shown in the large N limit that the ground-state energy is determined within an accuracy of ±8\pm 8% and that the mean field theory provides a reasonable result with relative error of less than 16% for the binding energy .Comment: 15 page

    Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons

    Get PDF
    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B^0 mesons in decays to B^{(*)+}\pi^- using 1.7/fb of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B^{*0}_2 state are measured to be m(B^{*0}_2) = 5740.2^{+1.7}_{-1.8}(stat.) ^{+0.9}_{-0.8}(syst.) MeV/c^2 and \Gamma(B^{*0}_2) = 22.7^{+3.8}_{-3.2}(stat.) ^{+3.2}_{-10.2}(syst.) MeV/c^2. The mass difference between the B^{*0}_2 and B^0_1 states is measured to be 14.9^{+2.2}_{-2.5}(stat.) ^{+1.2}_{-1.4}(syst.) MeV/c^2, resulting in a B^0_1 mass of 5725.3^{+1.6}_{-2.2}(stat.) ^{+1.4}_{-1.5}(syst.) MeV/c^2. This is currently the most precise measurement of the masses of these states and the first measurement of the B^{*0}_2 width.Comment: 7 pages, 1 figure, 1 table. Submitted to Phys.Rev.Let

    Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities

    Get PDF
    We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Per\ufa

    Get PDF
    \ua9 2024. The Author(s). Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú

    Get PDF
    Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families
    corecore