39 research outputs found
Adjuvant Interactions with Lipid Membranes and Their Effect on Cellular Immune Responses
Adjuvants are commonly included in vaccines and have been invaluable in making them safer and more robust. Despite their prolific use, adjuvant mechanisms of action remain poorly understood. Many receptor-mediated mechanisms have been proposed for adjuvants, and many likely contribute to their mechanisms of action, but several adjuvants also interact with the plasma membrane. Although few have considered how lipid-mediated interactions contribute to adjuvanticity, previous studies suggested aluminum-based adjuvants (ABAs) have high affinity for sphingomyelin and cholesterol, which allowed them to activate dendritic cells exclusively through lipid sorting. This dissertation sought to understand how lipid interactions contribute to the immunostimulatory properties of adjuvants. The membrane interaction of Alhydrogel (AH) and Adju-Phos (AP) was initially investigated in a simple lipid monolayer representative of the outer leaflet of the plasma membrane. AH and AP interacted with the model monolayer and promoted lipid clustering, although the physiochemical properties of each adjuvant caused them to interact differently. In a more complex lipid system containing sphingomyelin and cholesterol, the lipid interaction behavior was consistent and revealed AH and AP stabilized sphingomyelin- and cholesterol-rich lipid domains even in the presence of an antigen. Lipid raft clustering observed in dendritic cells exposed to ABAs in vitro was reminiscent of domain clustering observed in the monolayer and corresponded to conditions which enhanced cell activation, suggesting membrane interactions and lipid sorting could indeed contribute to ABA mechanisms of action. Lipid-interactions were also considered while designing an adjuvant-based antigen-specific immunotherapy (ASIT). An MF59-analog (MF59a) made in our lab was selected to co-deliver ovalbumin and dexamethasone based on its ability to solubilize dexamethasone, extend its release, and enhance its membrane permeability and internalization. The combination of MF59a, ovalbumin, and dexamethasone inhibited several pro-inflammatory cytokines in dendritic cells and ovalbumin-educated splenocytes, and proved emulsion adjuvants could provide an ideal vehicle to create targeted, tolerizing ASITs. Therefore, lipid interactions can provide valuable insight while selecting the physiochemical properties of an adjuvant for pro- and anti-inflammatory applications. Our results provide compelling evidence that lipid interactions participate in adjuvant mechanisms of action, and should be considered when developing novel vaccines and adjuvants
Analytical characterization and formulation assessment of model secretory- immunoglobulin-A (sIgAs) for their potential use as low cost, orally delivered sIgAs
Enterotoxigenic Escherichia coli (ETEC) is a major cause of bacterial diarrheal disease in developing countries, especially among children and infants. ETEC is estimated to cause 280-400 million diarrheal episodes per year in children \u3c5 years of age, resulting in 300,000 to 500,000 deaths.1 Despite the need for a vaccine, there are currently no licensed vaccines against ETEC. Alternatively, passive immunization by oral delivery of pathogen-specific immunoglobulins is another promising approach to provide “instant” protection against ETEC. The potential advantages of oral delivery are reduced cost, simplicity of administration and localized treatment within the GI tract. Secretory IgA (sIgA) is of particular interest because it is naturally found in the mucosal surfaces within the GI tract, relatively more resistant to proteolysis by digestive enzymes (vs. IgGs), and can protect against enteric bacteria by directly neutralizing virulence factors.2 One major challenge of this approach is the instability of protein molecules during oral delivery (in the digestive tract) as well as during long-term storage (in various formulations). In this study, two proteins, sIgA1 and sIgA2 against heat labile toxin (LT, one of the major virulence factors of ETEC), were used as model sIgA molecules for developing analytical techniques and assessing stability (physicochemical as well as in vitro binding) under various conditions. A combination of biochemical and biophysical methods were employed to comprehensively characterize the sIgA1 and sIgA2 model proteins including primary structure, post translational modifications (i.e., N-linked glycans), size, apparent solubility, higher order structure and conformational stability as well as in vitro antigen binding. Using these characterization and stability indicating methods, we are monitoring the stability of these two model sIgAs both in an in vitro digestion model (to mimic in vivo degradation conditions), and during accelerated stability studies (to assess storage stability). Our goal is to use the information gained by these aforementioned methods and stability studies to design stable, low-cost liquid formulations for oral delivery of sIgAs in the developing world.
Please click Additional Files below to see the full abstract
Formulation and stabilization of a recombinant human Cytomegalovirus vector for use as a candidate vaccine for HIV-1
Vaccination using Cytomegalovirus (CMV) vectors have recently shown promising results in conferring protection in non-human primates against SIV and Mycobacterium tuberculosis infection (1-3). Since CMV vectors can stimulate the production of high concentrations of systemic effector memory T-cells, CMV vectors (containing the appropriate insert) have the potential to clear SIV/HIV and Mycobacterium tuberculosis infection, provided administration occurs at the onset of infection (1, 3). Despite the promising animal data, CMV vectors are prone to potency loss (i.e., degradation) by freeze-thaw and storage at 2-8°C. In this study, we wished to develop formulations with increased freeze-thaw and liquid stability for a recombinant human CMV vector (rHCMV-1) for use in initial clinical trials including i) reduce vector potency loss to \u3c0.5 log after 1 freeze-thaw cycle and ii) reduce vector potency loss to \u3c0.5 log after 4 hours at 2-8°C storage. To achieve these goals, we screened a library of ~50 pharmaceutical excipients and evaluated their effect on vector potency after 3 freeze-thaw cycles or incubation at 4°C for several days. We found that certain additives completely protected rHCMV-1 against freeze-thaw mediated potency loss. With regards to liquid stability, we found certain additives slowed the rate of rHCMV-1 titer loss when stored at 4°C. After screening various excipient combinations, we evaluated three candidate formulations and benchmarked them against the bulk drug substance (BDS) formulation buffer and another published formulation (4). The candidate formulations were significantly more stable than the formulations used for benchmarking in terms reducing rHCMV-1 titer loss due to freeze-thaw and incubation at 4°C for up to 30 days. Despite providing greater stability than the current BDS formulation buffer, rHCMV-1 titer loss was still observed at 4°C as a function of incubation time, which suggests further stabilization (i.e., lyophilization) is likely necessary for longer term development. This study highlights the utility of empirical design of a liquid formulation of a live viral vector where freeze-thaw and short-term liquid storage are necessary.
References S. G. Hansen et al., Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med 24, 130-143 (2018). S. G. Hansen et al., Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523-527 (2011). S. G. Hansen et al., Immune clearance of highly pathogenic SIV infection. Nature 502, 100-104 (2013). T.-M. Fu, D. Wang, M. B. Medi, M. S. D. Corp, Ed. (2013).
Acknowledgements: This work was funded by the Bill and Melinda Gates Foundation.
*Current affiliation: Bill and Melinda Gates Foundation
Increase of plasma IL-9 and decrease of plasma IL-5, IL-7, and IFN-γ in patients with chronic heart failure
BACKGROUND: Several cytokines are associated with the development and/or progression of chronic heart failure (CHF). Our aim was to look more closely at the cytokine networks involved in CHF, and to assess whether disease etiology affects cytokine expression. The study population was comprised of a) 69 patients with stable CHF, New York Heart Association (NYHA) II/IV classes, secondary to ischaemic (ICM) and non ischaemic dilated (NIDCM) cardiomyopathy and b) 16 control subjects. We analyzed and compared the plasma levels of 27 pro- and anti-inflammatory mediators, in the study population and assessed for any possible correlation with echocardiographic parameters and disease duration.
METHODS: 27 cytokines and growth factors were analyzed in the plasma of ICM- (n = 42) and NIDCM (n = 27) NYHA class II-IV patients vs age- and gender-matched controls (n = 16) by a beadbased multiplex immunoassay. Statistical analysis was performed by ANOVA followed by Tukey post-hoc test for multiple comparison.
RESULTS: Macrophage inflammatory protein (MIP)-1\u3b2, Vascular endothelial growth factor (VEGF), interleukin (IL)-9, Monocyte chemotactic protein (MCP)-1, and IL-8 plasma levels were increased in both ICM and NIDCM groups vs controls. In contrast, IL-7, IL-5, and Interferon (IFN)-\u3b3 were decreased in both ICM and NIDCM groups as compared to controls. Plasma IL-6 and IL-1 \u3b2 were increased in ICM and decreased in NIDCM, vs controls, respectively.IL-9 levels inversely correlated, in ICM patients, with left ventricular ejection fraction (LVEF) while IL-5 plasma levels inversely correlated with disease duration, in NYHA III/IV ICM patients.This is the first time that both an increase of plasma IL-9, and a decrease of plasma IL-5, IL-7 and IFN-\u3b3 have been reported in ICM as well as in NIDCM groups, vs controls. Interestingly, such cytokines are part of a network of genes whose expression levels change during chronic heart failure. The altered expression levels of MIP-1 \u3b2, VEGF, MCP-1, IL-1 \u3b2, IL-6, and IL-8, found in this study, are in keeping with previous reports.
CONCLUSIONS: The increase of plasma IL-9, and the decrease of plasma IL-5, IL-7 and IFN-\u3b3 in ICM as well as in NIDCM groups vs controls may contribute to get further insights into the inflammatory pathways involved in CHF
Regulation of Gene Expression and Signaling Pathway Activity in Mammalian Cells by Automated Microfluidics Feedback Control
Gene
networks and signaling pathways display complex topologies
and, as a result, complex nonlinear behaviors. Accumulating evidence
shows that both static (concentration) and dynamical (rate-of-change)
features of transcription factors, ligands and environmental stimuli
control downstream processes and ultimately cellular functions. Currently,
however, methods to generate stimuli with the desired features to
probe cell response are still lacking. Here, combining tools from
Control Engineering and Synthetic Biology (cybergenetics), we propose
a simple and cost-effective microfluidics-based platform to precisely
regulate gene expression and signaling pathway activity in mammalian
cells by means of real-time feedback control. We show that this platform
allows (i) to automatically regulate gene expression from inducible
promoters in different cell types, including mouse embryonic stem
cells; (ii) to precisely regulate the activity of the mTOR signaling
pathway in single cells; (iii) to build a biohybrid oscillator in
single embryonic stem cells by interfacing biological parts with virtual in silico counterparts. Ultimately, this platform can be
used to probe gene networks and signaling pathways to understand how
they process static and dynamic features of specific stimuli, as well
as for the rapid prototyping of synthetic circuits for biotechnology
and biomedical purposes
Establishment of patient-derived tumor organoids to functionally inform treatment decisions in metastatic colorectal cancer
Colorectal cancer; Personalized medicine; ResistanceCáncer colorrectal; Medicina personalizada; ResistenciaCàncer colorectal; Medicina personalitzada; ResistènciaBackground
Metastatic colorectal cancer (mCRC) patients tend to have modest benefits from molecularly driven therapeutics. Patient-derived tumor organoids (PDTOs) represent an unmatched model to elucidate tumor resistance to therapy, due to their high capacity to resemble tumor characteristics.
Materials and methods
We used viable tumor tissue from two cohorts of patients with mCRC, naïve or refractory to treatment, respectively, for generating PDTOs. The derived models were subjected to a 6-day drug screening assay (DSA) with a comprehensive pipeline of chemotherapy and targeted drugs against almost all the actionable mCRC molecular drivers. For the second cohort DSA data were matched with those from PDTO genotyping.
Results
A total of 40 PDTOs included in the two cohorts were derived from mCRC primary tumors or metastases. The first cohort included 31 PDTOs derived from patients treated in front line. For this cohort, DSA results were matched with patient responses. Moreover, RAS/BRAF mutational status was matched with DSA cetuximab response. Ten out of 12 (83.3%) RAS wild-type PDTOs responded to cetuximab, while all the mutant PDTOs, 8 out of 8 (100%), were resistant. For the second cohort (chemorefractory patients), we used part of tumor tissue for genotyping. Four out of nine DSA/genotyping data resulted applicable in the clinic. Two RAS-mutant mCRC patients have been treated with FOLFOX–bevacizumab and mitomycin–capecitabine in third line, respectively, based on DSA results, obtaining disease control. One patient was treated with nivolumab–second mitochondrial-derived activator of caspases mimetic (phase I trial) due to high tumor mutational burden at genotyping, experiencing stable disease. In one case, the presence of BRCA2 mutation correlated with DSA sensitivity to olaparib; however, the patient could not receive the therapy.
Conclusions
Using CRC as a model, we have designed and validated a clinically applicable methodology to potentially inform clinical decisions with functional data. Undoubtedly, further larger analyses are needed to improve methodology success rates and propose suitable treatment strategies for mCRC patients.This Translational Research Fellowship Project was supported by the ESMO with the aid of a grant from Amgen, by the Accelerator (ACRCelerator) [grant number A26825] and Ayuda a médicos jóvenes investigadores from Fundacion Científica—Asociacion Española Contra el Cancer (FC-AECC)/Associazione Italiana per la Ricerca sul Cancro (AIRC)/Cancer Research United Kingdom (CRUK) and by Familia Armangué. Any views, opinions, findings, conclusions or recommendations expressed in this material are those solely of the author(s) and do not necessarily reflect those of ESMO or Amgen. We thank Regione Campania (I-Cure Research Project) [grant number: Cup 21C17000030007], ESMO Translational Research Fellowship Program
Natural Occurrence of Ochratoxin A in Musts, Wines and Grape Vine Fruits from Grapes Harvested in Argentina
In this study, ochratoxin A (OTA) occurrence in Argentinean musts, wines and dried vine fruits was evaluated, alongside with the performance of OchraStarTM columns for OTA extraction. In all the three matrices analyzed, the OchraStarTM columns showed good performance. The analysis of natural occurrence of OTA in the red must and the red wine samples showed low incidence with low levels of mean OTA contamination (0.12 ng/mL and 0.37 ng/mL, respectively), while 60% of the dried vine fruit samples were contaminated with OTA, in levels ranging from 0.26 to 20.28 ng/g
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication