57 research outputs found

    Recomendaciones de manejo de la afectación renal en el complejo esclerosis tuberosa

    Get PDF
    El complejo esclerosis tuberosa (CET) es una enfermedad rara, hereditaria, multisistémica y con un amplio espectro fenotípico. Su manejo requiere de la colaboración de múltiples especialistas. Así como en la edad pediátrica cobra un especial relieve el neurólogo pediatra, en la edad adulta la afectación renal es la causante de la mayor morbimortalidad. Existen diversas recomendaciones sobre el manejo general del paciente con CET, pero ninguna que se centre en la afectación renal. Las presentes recomendaciones responden a la necesidad de proporcionar pautas para facilitar un mejor conocimiento y manejo diagnóstico-terapéutico de la afectación renal del CET mediante un uso racional de las pruebas complementarias y el empleo correcto de los tratamientos disponibles. Su elaboración se ha basado en el consenso dentro del grupo de trabajo de enfermedades renales hereditarias de la SEN/REDINREN. Ha contado con la participación de especialistas en CET no nefrólogos también con el fin de ampliar la visión de la enfermedad

    The coexistence of diabetic retinopathy and diabetic nephropathy is associated with worse kidney outcomes

    Get PDF
    Up to 50-60% of patients with diabetes have non-diabetic kidney disease (NDKD) on kidney biopsy. Diabetic retinopathy (DR) is a microvascular complication of diabetes frequently associated with diabetic nephropathy (DN). The objective of the current study was to investigate the kidney outcomes and survival in patients with biopsy diagnoses of DN and NDKD according to the presence of DR. We conducted an observational, multicentre and retrospective study of the pathological findings of renal biopsies from 832 consecutive patients with diabetes from 2002 to 2014 from 18 nephrology departments. The association of DR with kidney replacement therapy (KRT) or survival was assessed by Kaplan-Meier and Cox regression analyses. Of 832 patients with diabetes and renal biopsy, 768 had a retinal examination and 221/768 (22.6%) had DR. During a follow-up of 10 years, 288/760 (37.9%) patients with follow-up data needed KRT and 157/760 (20.7%) died. The incidence of KRT was higher among patients with DN (alone or with NDKD) and DR [103/175 (58.9%)] than among patients without DR [88/216 (40.7%), P <.0001]. The incidence of KRT was also higher among patients with only NDKD and DR than among those without DR [18/46 (39.1%) versus 79/331 (23.9%), P <.0001]. In multivariate analysis, DR or DN were independent risk factors for KRT {hazard ratio [HR] 2.48 [confidence interval (CI) 1.85-3.31], P <.001}. DN (with or without DR) was also identified as an independent risk factor for mortality [HR 1.81 (CI 1.26-2.62), P =.001]. DR is associated with a higher risk of progression to kidney failure in patients with histological DN and in patients with NDKD

    Risk factors for non-diabetic renal disease in diabetic patients

    Get PDF
    Background. Diabetic patients with kidney disease have a high prevalence of non-diabetic renal disease (NDRD). Renal and patient survival regarding the diagnosis of diabetic nephropathy (DN) or NDRD have not been widely studied. The aim of our study is to evaluate the prevalence of NDRD in patients with diabetes and to determine the capacity of clinical and analytical data in the prediction of NDRD. In addition, we will study renal and patient prognosis according to the renal biopsy findings in patients with diabetes. Methods. Retrospective multicentre observational study of renal biopsies performed in patients with diabetes from 2002 to 2014. Results. In total, 832 patients were included: 621 men (74.6%), mean age of 61.7 6 12.8 years, creatinine was 2.8 6 2.2 mg/dL and proteinuria 2.7 (interquartile range: 1.2–5.4) g/24 h. About 39.5% (n ¼ 329) of patients had DN, 49.6% (n ¼ 413) NDRD and 10.8% (n ¼ 90) mixed forms. The most frequent NDRD was nephroangiosclerosis (NAS) (n ¼ 87, 9.3%). In the multivariate logistic regression analysis, older age [odds ratio (OR) ¼ 1.03, 95% CI: 1.02–1.05, P < 0.001], microhaematuria (OR ¼ 1.51, 95% CI: 1.03–2.21, P ¼ 0.033) and absence of diabetic retinopathy (DR) (OR ¼ 0.28, 95% CI: 0.19–0.42, P < 0.001) were independently associated with NDRD. Kaplan–Meier analysis showed that patients with DN or mixed forms presented worse renal prognosis than NDRD (P < 0.001) and higher mortality (P ¼ 0.029). In multivariate Cox analyses, older age (P < 0.001), higher serum creatinine (P < 0.001), higher proteinuria (P < 0.001), DR (P ¼ 0.007) and DN (P < 0.001) were independent risk factors for renal replacement therapy. In addition, older age (P < 0.001), peripheral vascular disease (P ¼ 0.002), higher creatinine (P ¼ 0.01) and DN (P ¼ 0.015) were independent risk factors for mortality. Conclusions. The most frequent cause of NDRD is NAS. Elderly patients with microhaematuria and the absence of DR are the ones at risk for NDRD. Patients with DN presented worse renal prognosis and higher mortality than those with NDRD. These results suggest that in some patients with diabetes, kidney biopsy may be useful for an accurate renal diagnosis and subsequently treatment and prognosis

    Internet of Things in Water Management and Treatment

    Get PDF
    The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality are presented. The applications of IoT solutions based on these discoveries are also discussed

    Management of patients with hypertension and chronic kidney disease referred to Hypertension Excellence Centres among 27 countries. On behalf of the European Society of Hypertension Working Group on Hypertension and the Kidney.

    Get PDF
    Objective Real-life management of patients with hypertension and chronic kidney disease (CKD) among European Society of Hypertension Excellence Centres (ESH-ECs) is unclear : we aimed to investigate it. Methods A survey was conducted in 2023. The questionnaire contained 64 questions asking ESH-ECs representatives to estimate how patients with CKD are managed. Results Overall, 88 ESH-ECS representatives from 27 countries participated. According to the responders, renin-angiotensin system (RAS) blockers, calcium-channel blockers and thiazides were often added when these medications were lacking in CKD patients, but physicians were more prone to initiate RAS blockers (90% [interquartile range: 70-95%]) than MRA (20% [10-30%]), SGLT2i (30% [20-50%]) or (GLP1-RA (10% [5-15%]). Despite treatment optimisation, 30% of responders indicated that hypertension remained uncontrolled (30% (15-40%) vs 18% [10%-25%]) in CKD and CKD patients, respectively). Hyperkalemia was the most frequent barrier to initiate RAS blockers, and dosage reduction was considered in 45% of responders when kalaemia was 5.5-5.9 mmol/L. Conclusions RAS blockers are initiated in most ESH-ECS in CKD patients, but MRA and SGLT2i initiations are less frequent. Hyperkalemia was the main barrier for initiation or adequate dosing of RAS blockade, and RAS blockers' dosage reduction was the usual management

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻¹ of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions. Funding Bill & Melinda Gates Foundation

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. Funding: Bill & Melinda Gates Foundation

    Fernando Valderrábano

    No full text
    corecore