25 research outputs found

    A CFD based procedure for airspace integration of small unmanned aircraft within congested areas

    Get PDF
    Future integration of small unmanned aircraft within an urban airspace requires an a posteriori understanding of the building-induced aerodynamics which could negatively impact on vehicle performance. Moving away from generalised building formations, we model the centre of the city of Glasgow using Star-CCMþ, a commercial CFD package. After establishing a critical turbulent kinetic energy for our vehicle, we analyse the CFD results to determine how best to operate a small unmanned aircraft within this environment. As discovered in a previous study, the spatial distribution of turbulence increases with altitude. It was recommended then that UAVs operate at the minimal allowable altitude within a congested area. As the flow characteristics in an environment are similar, regardless of inlet velocity, we can determine areas within a city which will have consistently low or high values of turbulent kinetic energy. As the distribution of turbulence is dependent on prevailing wind directions, some directions are more favourable than others, even if the wind speed is unchanging. Moving forward we should aim to gather more information about integrated aircraft and how they respond to turbulence in a congested area

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Delayed mucosal anti-viral responses despite robust peripheral inflammation in fatal COVID-19

    Get PDF
    Background While inflammatory and immune responses to SARS-CoV-2 infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished COVID-19 severity categories, and relate these to disease progression and peripheral inflammation. Methods We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalised with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days post-symptom onset) or late (6-20 days post-symptom onset). Results Patients that survived severe COVID-19 showed IFN-dominated mucosal immune responses (IFN-γ, CXCL10 and CXCL13) early in infection. These early mucosal responses were absent in patients that would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by IL-2, IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. Conclusions Defective early mucosal anti-viral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19

    Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in ℓ+ℓ-bb final states

    Get PDF
    Results are reported on a search for decays of a pseudoscalar A boson into a Z boson and a light scalar h boson, where the Z boson decays into a pair of oppositely-charged electrons or muons, and the h boson decays into bb- The search is based on data from proton-proton collisions at a center-of-mass energy s=8 TeV collected with the CMS detector, corresponding to an integrated luminosity of 19.7 fb-1. The h boson is assumed to be the standard model-like Higgs boson with a mass of 125 GeV. With no evidence for signal, upper limits are obtained on the product of the production cross section and the branching fraction of the A boson in the Zh channel. Results are also interpreted in the context of two Higgs doublet models. © 2015

    God’s Garden: Nature, Order, and the Presbyterian Conception of the British North American “Wilderness”

    No full text

    Analysis of Infection Characteristics and Antiparasite Immune Responses in Resistant Compared with Susceptible Hosts

    No full text

    Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC

    No full text
    The discovery of the Higgs boson in 2012, by the ATLAS and CMS experiments, was a success achieved with only a percent of the entire dataset foreseen for the LHC. It opened a landscape of possibilities in the study of Higgs boson properties, Electroweak Symmetry breaking and the Standard Model in general, as well as new avenues in probing new physics beyond the Standard Model. Six years after the discovery, with a conspicuously larger dataset collected during LHC Run 2 at a 13 TeV centre-of-mass energy, the theory and experimental particle physics communities have started a meticulous exploration of the potential for precision measurements of its properties. This includes studies of Higgs boson production and decays processes, the search for rare decays and production modes, high energy observables, and searches for an extended electroweak symmetry breaking sector. This report summarises the potential reach and opportunities in Higgs physics during the High Luminosity phase of the LHC, with an expected dataset of pp collisions at 14 TeV, corresponding to an integrated luminosity of 3~ab1^{-1}. These studies are performed in light of the most recent analyses from LHC collaborations and the latest theoretical developments. The potential of an LHC upgrade, colliding protons at a centre-of-mass energy of 27 TeV and producing a dataset corresponding to an integrated luminosity of 15~ab1^{-1}, is also discussed

    Comparative map for mice and humans.

    No full text
    corecore