122 research outputs found

    Consumo sustentável no segmento de vestuário: um estudo comparativo entre brasileiros e alemães

    Get PDF
    Objective – To Analyze and compare sustainable consumption habits in the clothing segment between Brazilians and Germans. Design/methodology/approach– Descriptive, exploratory, and qualitative research. Interviews were conducted with 15 Germans and 15 Brazilians, aged between 20 and 32 years old, in order to identify consumption habits in the clothing segment, familiarity with the theme: sustainable consumption , and levels of personal awareness regarding their consumption behavior, applying the content analysis based on Bardin (2011) as a technique. Findings – A significant difference between the two groups was found. While Germans presented greater knowledge on the subject, which was converted into embracing sustainable conduct in the clothing segment, Brazilians demonstrated to have a more superficial knowledge, besides presenting lower levels of awareness in their consumption and sustainable practices in the analyzed segment. Therefore, it concludes that Germans have greater access to information on the theme and more interest and familiarity with the subject. Consequently, it showed that it influences their consumption behavior, presenting habits towards environmental, social, and economic concerns in the clothing segment, habits that were not identified in the Brazilian sample group. Originality/value (mandatory) – It contributes by providing an opportunity to comparatively analyze the habits and consumption of two distinct countries, helping entrepreneurs and managers to understand the market segments better and create more powerful strategies, focusing on the value perceived by the customer in the acts of consumption.Objetivo – Analisar e comparar hábitos de consumo sustentável no segmento de vestuário entre brasileiros e alemães. Desenho/Metodologia/Abordagem– Pesquisa descritiva, exploratória e qualitativa. Foram realizadas entrevistas com 15 alemães e 15 brasileiros, com idade entre 20 e 32 anos, a fim de identificar hábitos de consumo no segmento de vestuário, familiaridade com o tema consumo sustentável e níveis de consciência pessoal quanto aos seus hábitos de consumo empregando como técnica a análise de conteúdo baseado em Bardin (2011). Resultados – Constatou-se uma diferença expressiva entre os dois grupos. Enquanto os alemães apresentaram maior conhecimento sobre o assunto, que se converteu na adoção de hábitos de consumo sustentável no segmento de vestuário, os brasileiros demonstraram ter um conhecimento mais superficial, além de apresentarem níveis menores de consciência de consumo e de práticas sustentáveis no segmento analisado. Conclui que os alemães têm maior acesso a informações sobre o tema e mais interesse e familiaridade com o assunto. Isso mostrou influenciar seus comportamentos de consumo, que apresentam hábitos no sentido de preocupação ambiental, social e econômica no segmento de vestuário, costumes esses não identificados no grupo amostral brasileiro. Originalidade/valor – Contribui por oportunizar analisar comparativamente hábitos e de consumo de dois páises distintos, auxiliando empreendedores e gestores a conhecer melhor os segmentos de mercado e criar estratégias mais assertivas, atentando-se para o valor percebido pelo cliente nos atos de consumo

    The role of diffusion tensor imaging and tractography for deep brain stimulation planning in treatment of obsessive-compulsive disorder

    Get PDF
    Introduction: Obsessive-compulsive disorder (OCD) is a common, chronic and long-lasting mental disorder. The current first-line therapy for OCD is high doses of selective serotonin reuptake inhibitor (SSRI) and cognitive-behavioral psychotherapy. For patients with refractory symptoms, studies demonstrated that they may respond well to Deep Brain Stimulation (DBS), a technique that can modulate altered neuronal activity. Some stimulation sites are currently being used as targets to DBS and showed good response, but further analyses are necessary to improve the location of the electrodes since some patients demonstrated a poor outcome. Neuroimaging that assess white matter such as diffusion tensor image and tractography can evaluate the quality of the targets and assess the tracts that are affected by the electric field of the electrodes used in the surgery. Our hypothesis is that the patient outcome depends on the trajectory of the tracts that are affected by the electric field.Objectives: Our aim is to investigate which tracts connected with the stimulation sites contribute to clinical improvement effects and weather is possible to predict the outcomes based on connectivity.Methodology: We analyzed 4 patients (2 female) with treatment-refractory obsessive-compulsive disorder undergoing deep brain stimulation targeting the anterior limb of the internal capsule/ nucleus accumbens (ALIC). We will perform tractography analysis of the fibers using the volume of active tissue (VTA) as the region of interest. We will relate the alteration in OCD symptom severity on Yale-Brown obsessive-compulsive scale (Y-BOCS) between the condition before surgery and one-year follow-up with the tracts involved with the stimulation sites using DTI data such as fractal anisotropy and mean diffusivity.Partial Results: Half of the patients did show great improvement and the other two maintained a bad outcome. We found that active stimulation of the ALIC more lateral and posterior of the nucleus was associated with a better outcome. Currently, the description of the tracts involved in patients with better outcomes is performed. The tracts involved with this result will be determined by analysis of DTI and tractography.Discussion and Conclusion: For a future perspective, the results will be important to improve the stimulation sites in DBS surgery resulting in better outcomes

    The Linkages Between Photosynthesis, Productivity, Growth and Biomass in Lowland Amazonian Forests

    Get PDF
    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models

    Get PDF
    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs

    Hyperdominance in Amazonian Forest Carbon Cycling

    Get PDF
    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant’ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region

    Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.This paper is a product of the European Union's Seventh Framework Programme AMAZALERT project (282664). The field data used in this study have been generated by the RAINFOR network, which has been supported by a Gordon and Betty Moore Foundation grant, the European Union's Seventh Framework Programme projects 283080, ‘GEOCARBON’; and 282664, ‘AMAZALERT’; ERC grant ‘Tropical Forests in the Changing Earth System’), and Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grants ‘AMAZONICA’ (NE/F005806/1), ‘TROBIT’ (NE/D005590/1) and ‘Niche Evolution of South American Trees’ (NE/I028122/1). Additional data were included from the Tropical Ecology Assessment and Monitoring (TEAM) Network – a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution and the Wildlife Conservation Society, and partly funded by these institutions, the Gordon and Betty Moore Foundation, and other donors. Fieldwork was also partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil (CNPq), project Programa de Pesquisas Ecológicas de Longa Duração (PELD-403725/2012-7). A.R. acknowledges funding from the Helmholtz Alliance ‘Remote Sensing and Earth System Dynamics’; L.P., M.P.C. E.A. and M.T. are partially funded by the EU FP7 project ‘ROBIN’ (283093), with co-funding for E.A. from the Dutch Ministry of Economic Affairs (KB-14-003-030); B.C. [was supported in part by the US DOE (BER) NGEE-Tropics project (subcontract to LANL). O.L.P. is supported by an ERC Advanced Grant and is a Royal Society-Wolfson Research Merit Award holder. P.M. acknowledges support from ARC grant FT110100457 and NERC grants NE/J011002/1, and T.R.B. acknowledges support from a Leverhulme Trust Research Fellowship

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Evolutionary Heritage Influences Amazon Tree Ecology

    Get PDF
    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change
    corecore