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Abstract

Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for pre-

dicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global

vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productiv-

ity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree

mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control varia-

tion in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed

variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality

rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent

with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem

mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and

height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not

correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-

wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody

NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked

contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB.

Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and

variation in functional composition in DGVMs.

Keywords: allometry, carbon, dynamic global vegetation model, forest plots, productivity, tropical forest
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Introduction

Tropical forests are the most carbon-rich and produc-

tive of all forest biomes (Pan et al., 2011). The Amazon

basin in particular comprises approximately 50% of the

world’s tropical forests, and therefore, any perturba-

tions to this ecosystem will have important feedbacks

on both carbon cycling and climate worldwide (Zhao &

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13315
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Running, 2010; Wang et al., 2014). It is therefore impor-

tant that we understand the processes that determine

current patterns of carbon storage and cycling to pre-

dict how the productivity and carbon stores of these

forests will respond to changing environmental condi-

tions.

Our knowledge of the sensitivity of rainforest ecosys-

tems to environmental change is based on three

sources. Firstly, observational data from networks of

permanent plots, flux towers, remote sensing and air-

craft measurements of greenhouse gas concentrations

have demonstrated the sensitivity of these ecosystems

to environmental change, particularly in response to

drought (e.g. Phillips et al., 2009; Restrepo-Coupe et al.,

2013; Gatti et al., 2014). Secondly, experimental manipu-

lations of water stress have probed the mechanisms

behind these responses (e.g. Nepstad et al., 2007; da

Costa et al., 2010; Meir et al., 2015; Rowland et al., 2015).

Thirdly, process-based ecosystem models, especially

dynamic global vegetation models (DGVMs), have been

used to explore the future sensitivity of Amazon vege-

tation to increasing temperatures, carbon dioxide con-

centrations and water stress (e.g. Galbraith et al., 2010).

Coupled with climate models, DGVMs have high-

lighted the sensitivity (Cox et al., 2004), and more

recently, the resilience (Rammig et al., 2010; Hunting-

ford et al., 2013) of Amazonian forests to environmental

change. However, observations of above-ground bio-

mass (AGB, Mg C ha�1) and woody productivity (the

amount of net primary productivity (NPP) allocated to

above-ground woody growth: WP, Mg C ha�1 yr�1) are

still little used to parameterize and evaluate DGVMs

(e.g. Delbart et al., 2010; Castanho et al., 2013), despite

substantial progress increasing the spatial distribution

of such in situ observations (e.g. Feldpausch et al., 2011;

Quesada et al., 2012; Mitchard et al., 2014). Integrating

the insights from such observational studies into the

design, calibration and validation of DGVMs would

enhance our ability to make convincing predictions of

the future of tropical carbon.

Observational data can either be used to evaluate

the outputs of models, or more fundamentally, cali-

brate and inform the processes that models should

aim to include. For example, networks of inventory

plots have revealed strong differences in AGB among

terra firme forests in north-east and south-western

Amazonia (Baker et al., 2004; Malhi et al., 2006; Bar-

aloto et al., 2011; Quesada et al., 2012; Mitchard et al.,

2014). Such observations have been used to evaluate

the predictions of Amazonian forest biomass from

both remote sensing (e.g. Mitchard et al., 2014) and

DGVM studies (e.g. Castanho et al., 2013). These field

observations also yield information about the

processes that drive variation in above-ground carbon

stocks, which can also be used to evaluate and cali-

brate DGVMs. For example, the paradigm to emerge

from previous analysis of plot data in Amazonia is

that there is a positive association between woody

NPP and stem mortality rates, linked to a reduction

in AGB (Baker et al., 2004; Malhi et al., 2004; Quesada

et al., 2012). This finding has been used to evaluate

the architecture and outputs of DVGMs (Negrón-

Juárez et al., 2015) and has stimulated attempts to

make direct links between mortality and woody NPP

in these models (Delbart et al., 2010; Castanho et al.,

2013).

More generally, observational data are valuable for

informing how the fundamental processes that influ-

ence AGB should be included in vegetation models. For

example, the residence time of woody biomass, sw

(years), is often used as a measure of mortality in

DGVMs and is defined for a forest at steady state as:

sw ¼
AGB

WP
: ð1Þ

This parameter varies almost sixfold among tropical

forest plots (Galbraith et al., 2013). However, surpris-

ingly, in several commonly used vegetation models,

this parameter is constant; Galbraith et al. (2013) found

that 21 of the 27 vegetation models they compared use

single, fixed values for this parameter. In addition,

observational data suggest that the ultimate cause of

variation in tree mortality, WP and hence AGB is varia-

tion in edaphic properties (Quesada et al., 2012). Que-

sada et al. (2012) found that spatial differences in WP

correlated most strongly with total soil phosphorus,

whereas stem mortality rates correlated with a soil

physical structure index which combined soil depth,

texture, topography and anoxia. Most DGVMs, how-

ever, only include very limited feedbacks between veg-

etation and edaphic properties. Soil properties such as

texture are mainly implemented into DGVMs to param-

eterize hydraulic processes (e.g. Marthews et al., 2014)

and soil structure and nutrient content are rarely con-

sidered for other processes such as stem mortality.

Overall, the aim of this study is to compare how vari-

ation in WP and mortality control variation in AGB in

Amazonia using both field observations and four

DGVMs, to inform the future development of vegeta-

tion models. In terms of the analysis of observations,

we build on previous work (e.g. Baker et al., 2004;

Malhi et al., 2004, 2015) in two ways. Firstly, we com-

pare patterns of AGB with variation in two direct mea-

surements of mortality from each plot: the absolute,

stand-level rate of woody biomass loss (WL; Mg C

ha�1 yr�1) and the rate of stem mortality (l; % yr�1).

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13315
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Previous studies have used sw to examine how mortal-

ity influences AGB (e.g. Malhi et al., 2004, 2015; Gal-

braith et al., 2013). However, although sw is a useful

parameter in the context of vegetation modelling and to

partition ecosystem carbon fluxes, its dependency on

AGB (see Eqn 1) means that this term is not an inde-

pendent control of AGB stocks: it is inevitable that AGB

is inversely related to sw. In addition, as sw is defined

for a forest at steady state, it cannot be easily related to

specific short-term processes, such as droughts, which

ultimately cause tree mortality. Here, we therefore test

the sensitivity of AGB to direct independent measures

of both stand-level and stem-level variation in mortality

rates, as these measures may ultimately provide a more

appropriate basis for modelling mortality in DGVMs.

Secondly, we greatly extend the spatial coverage of

observations. The first large-scale studies of Amazon

forest dynamics (Baker et al., 2004; Malhi et al., 2004;

Phillips et al., 2004) focused on the western, and central

and eastern portions of the basin, but included few data

from forests on the Guiana and Brazilian Shields

(Fig. 1). These areas, however, have distinctive soils,

climate, forest structure and species composition (e.g.

ter Steege et al., 2006; Feldpausch et al., 2011). Here, we

use data from these regions to test whether the para-

digm of a positive association between woody NPP and

stem mortality rates, linked to a reduction in AGB, is

found across the full range of South American lowland

moist tropical forests.

In terms of the analysis of the DGVMs, we aim

firstly to establish the reliability of land vegetation

simulation for the Amazon basin by comparison of

modelling results with kriged maps of field observa-

tions of WP, mortality and AGB that illustrate the

major patterns of variation in these variables. We then

test how well the four DGVMs capture these spatial

patterns and the overall magnitude of AGB and WP.

Finally, we explore the relationships between simu-

lated AGB, WP and sw. By comparing our findings

from the analysis of the observations and simulation

results, we conclude by making recommendations for

model developments and data collection that will

improve our ability to model Amazonian vegetation

carbon stocks.

(a)

(c)

(b)

Fig. 1 Location of plots used to calculate (a) above-ground woody biomass, (b) above-ground woody productivity and stem and bio-

mass-based mortality and (c) the position of the kriged 1° map grid cells. The Amazon basin including forests on the Guiana Shield is

split into regions (shown by different colours) that are defined in Feldpausch et al. (2011). Plot locations are not geographically exact

but are offset slightly to improve the visualization of plots which are in very close proximity to each other.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13315
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Materials and methods

Plot observations

We used tree inventory data from permanent sample plots

located throughout Amazonia compiled as part of the RAIN-

FOR and TEAM networks to estimate stocks (AGB) and fluxes

of carbon (woody NPP, stem and biomass mortality) within

Amazonian forest stands (Fig. 1). For analysis of AGB, we

used the data for the 413 plots analysed by Mitchard et al.

(2014) (Fig. 1a). For properties which can only be calculated

by observing change over time and thus require more than

one census, plots in intact, moist, lowland (<1000 m asl) forest

were chosen which had a minimum total monitoring period of

2 years between 1995 and 2009 inclusive. Data for 167 plots

that met these criteria for analysis of dynamic properties were

downloaded from ForestPlots.net (Lopez-Gonzalez et al., 2011,

2012; Johnson et al., 2016; Fig. 1b and Table S1) and the TEAM

website (http://www.teamnetwork.org/data/query; data set

identifier codes 20130415013221_3991 and 20130405063033_

1587). For this data set, mean plot size is 1.09 ha, the mean

date of the first census is 2000.2 and the mean date of the final

census is 2008.5. Mean census interval length is 3.70 years and

plot mean total monitoring period is 8.3 years. Most of the

plots were monitored for most of the time period: on average,

76% of plots were being monitored in any given year from

2000–2008 (Fig. S1). All trees with a diameter at breast height

(dbh) greater than 10 cm were included in the analyses.

Plots were classified into four regions of lowlandmoist forest

defined by the nature and geological age of the soil substrate

(Fig. 1; Feldpausch et al., 2011). The soils and forests of the Gui-

ana and Brazilian Shields have developed on old, Cretaceous,

crystalline substrates, whereas the forests ofWestern Amazonia

are underlain by younger Andean substrates and Miocene

deposits (Irion, 1978; Quesada et al., 2010; Higgins et al., 2011).

East-central Amazonia contains reworked sediments derived

from the other three regions that have undergone almost contin-

uous weathering for more than 20 million years, leading to very

nutrient poor soils (Irion, 1978; Quesada et al., 2010). Previous

comparative studies have noted substantial differences in forest

dynamics between Western and East-central Amazonia (Baker

et al., 2004, 2014; Quesada et al., 2012), but largely excluded for-

ests on the Guiana and Brazilian Shields. This classification

therefore allows us to test the impact of including these distinc-

tive forests onAmazon-wide patterns of forest dynamics.

Above-ground biomass

For AGB values, we used the data set presented by Mitchard

et al. (2014) and Lopez-Gonzalez et al. (2014). In brief, for this

data set, the AGB (Mg DW ha�1) of each plot was calculated

using the Chave et al. (2005) moist forest allometric equa-

tion which includes measurements of diameter, wood density

and height:

AGB ¼

Pn
1ð0:0509qD

2HÞ

1000
; ð2Þ

where D is stem diameter (cm), q is stem wood density

(g cm�3), H is stem height (m) and n is the number of trees in

the stand. We retained the use of this biomass equation for

this study, instead of using the recent biomass equation of

Chave et al. (2014), to provide estimates of WP that are consis-

tent with Mitchard et al. (2014). Estimates of AGB for moist

tropical forests are in fact similar using either equation (Chave

et al., 2014). The height of each tree was estimated from tree

diameter using a height-diameter Weibull equation with dif-

ferent coefficients for each region, based on field-measured,

height-diameter relationships (Feldpausch et al., 2011). We

used this method to estimate tree height, rather than predict-

ing height on the basis of climate as in Chave et al. (2014),

because among moist forests in Amazonia, the principal varia-

tion in height/diameter allometry is due to the contrast

between the particularly tall-statured forests on the Guiana

Shield and shorter-statured forest in other regions (Feld-

pausch et al., 2011). This difference is related to the unique

species composition of forests on the Guiana Shield rather

than variation in climate (Feldpausch et al., 2011). The wood

density of each tree was assigned on a taxonomic basis from

the pan-tropical database of Zanne et al. (2009) and Chave

et al. (2009), following Baker et al. (2004). Mean plot wood

density values were used when taxonomic information was

missing for individual trees.

To estimate total above-ground woody biomass, we

assumed that carbon is 50% of total dry biomass (Penman

et al., 2003) and to account for the unmeasured, small trees

(<10 cm), we added an additional 6.2% of carbon to each of

the plots, following Malhi et al. (2006). We do not include the

unknown contributions from lianas, epiphytes, necromass,

shrubs and herbs.

Mortality and productivity

Stem mortality rates were calculated as the exponential mor-

tality coefficient l [% yr�1; Sheil & May (1996)]:

l ¼
ln ðn0Þ � ln ðn0 � ndÞ

t
� 100; ð3Þ

where n0 is the number of stems at the start of the census

interval, nd is the number of stems that die in the interval and

t is the census interval length. As estimates of mortality rates

in heterogeneous populations are influenced by the census

interval, we standardized our estimates of l to comparable

census intervals using the equation of Lewis et al. (2004). We

calculated corrected values of l for each census interval for

each plot in the data set, and calculated average values of l

per plot, weighted by the census interval length.

Total NPP cannot be calculated from tree inventories as this

includes both the growth of the stem as well as litterfall and

root production which has only been measured at a relatively

small number of Amazonian sites (Malhi et al., 2015). There-

fore, we are restricted to calculating WP, which can be calcu-

lated from repeated censuses of tree diameters within

inventory plots. Comparable output can be obtained from veg-
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etation models as DGVMs typically partition total above-

ground NPP into different carbon pools using various carbon

allocation algorithms, ranging from fixed coefficients (e.g.

INLAND) to approaches based on resource limitation (e.g.

ORCHIDEE). For comparison with measurement data, we

used the fraction of simulated above-ground NPP that the

models allocate to woody growth. Both the observed measure-

ments and models exclude the contribution to WP that is made

by the loss and regrowth of large woody branches. This com-

ponent is approximately 1 Mg C ha�1 a�1 in Amazonian for-

ests or 10% of above-ground NPP (Malhi et al., 2009). WL was

calculated as the sum of the biomass of all trees that died

within a given census interval.

Estimates of WP and WL are influenced by the census inter-

val over which they are calculated, because more trees will

recruit and die without being recorded during longer census

intervals (Talbot et al., 2014). We followed the methods of Tal-

bot et al. (2014) for calculating WP with forest inventory data

to correct for this bias (Supporting information, Appendix S1).

Thus, we calculated WP as the sum of (i) the growth of trees

that survive the census period, and the estimated growth of

(ii) trees that died during the census interval, prior to their

death, (iii) trees which recruited within the interval, and (iv)

trees that both recruited and died during the census interval.

Similarly, to calculate WL, we summed the biomass of trees

that die within a census interval with components (ii) and (iv)

above. We calculated corrected values of WP and WL for each

census interval for each plot in the data set, and calculated

average values per plot, weighted by census interval length.

Analysis of observational data

The current paradigm for Amazonian forests suggests that WP

and l are positively correlated and that both correlate nega-

tively with AGB (Malhi et al., 2002; Quesada et al., 2012). We

tested whether these relationships are supported by the data

from across South American tropical lowland moist forest,

including plots from the Guiana and Brazilian Shield. Firstly,

we exploredwhether different regions have distinctive patterns

of carbon cycling by comparingWP, WL, l and AGB among the

four regions using ANOVA. Secondly, we explored the relation-

ships between these terms using generalized least squares

regression. We tested whether WP and either WL or l were sig-

nificantly related to AGB and whether these relationships dif-

fered among the four regions. We accounted for spatial

autocorrelation by specifying a Gaussian spatial correlation

structure, which is consistent with the shape of the semivari-

ograms for these forest properties across the plot network

(Fig. S2). Stem mortality rates and absolute rates of woody bio-

mass loss were log-transformed prior to analysis to ensure the

residuals were normally distributed. Model evaluation was

performed on the basis of Akaike information criterion (AIC)

values. Analyses were carried out using the nlme package in R

(R Development Core Team, 2012; Pinheiro et al., 2015).

Model simulations and comparison with observations

We tested how well a range of DGVMs perform for Amazo-

nia by comparing observed AGB, WP and sw to the output

from four DGVMs. The DGVMs included in this study are

the joint uk land environment simulator (jules), v. 2.1. (Best

et al., 2011; Clark et al., 2011), the Lund-Potsdam-Jena DGVM

for managed Land (LPJmL; Sitch et al., 2003; Gerten et al.,

2004; Bondeau et al., 2007), the INtegrated model of LAND

surface processes (INLAND) model (a development of the

IBIS model, Kucharik et al., 2000) and the Organising Carbon

and Hydrology In Dynamic EcosystEms (ORCHIDEE) model

(Krinner et al., 2005). A brief description of each of the four

models and how output data are derived is included in the

supplementary information (Appendix S2). The models each

followed the standardized Moore Foundation Andes-Ama-

zon Initiative (AAI) modelling protocol (Zhang et al., 2015).

The simulated region spanned 88°W to 34°W and 13°N to

25°S. Simulations from each model included a spin-up per-

iod from bare ground of up to 500 years with pre-industrial

atmospheric CO2 (278 ppm). The models were then forced

by recycling 39 year, 1° spatial resolution, bias-corrected

NCEP meteorological data (Sheffield et al., 2006) for 1715–

2008 with increasing CO2 concentrations, as in Zhang et al.

(2015). Figure S3 shows the spatial distribution of mean

meteorological variables for 2000–2008 across the Amazon

basin. As well as precipitation, temperature and short-wave

radiation we also show maximum cumulative water deficit

(MWD), calculated from monthly precipitation values to

indicate drought severity across the basin, as in Aragao et al.

(2007). The time period of model output is 2000–2008.

To compare simulated woody NPP with observed WP, cor-

rections were applied to the simulated total woody NPP to

calculate above-ground woody NPP only, by assuming a

below-ground to above-ground allocation ratio of 0.21 (Malhi

et al., 2009). In the case of JULES, only a fraction of the NPP is

allocated to biomass growth, as the remainder is allocated to

‘spreading’ of vegetated area – an increase in the fraction of

grid cell cover (Cox, 2001). To facilitate comparison with

observations and other models, we therefore rescaled WP from

JULES, retaining the relative allocation to wood but assuming

that all of the NPP was used for growth.

We compared model outputs to kriged maps of AGB, WP

and mortality to understand how well the DGVMs captured

the major differences in AGB, WP and mortality across the

basin. The forest properties were mapped onto a region

defined as Amazonia sensu stricto (Eva et al., 2005) which is

divided into 1° by 1° longitude–latitude grid cells (Fig. 1c).

Model output was provided for the same grid. The kriged

maps were created using ordinary kriging with the gstat pack-

age in R (Pebesma, 2004). To assess the predictive ability of the

kriging method, we performed a leave-one-out cross-valida-

tion technique. This involves leaving one site out in turn and

performing the kriging using the rest of the observations. The

kriging prediction for this location was then compared with

the observation. Results from the cross-validation demonstrate

that there was no spatial bias in the kriging method (Fig. S4).

There was also no tendency for the kriging to overestimate or

underestimate values for the whole basin. However, the krig-

ing method was not able to capture the few locations with

very high mortality values (Fig. S5). This problem is common

to any interpolation method which is effectively averaging

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13315

6 M. O. JOHNSON et al.



observed values. The median percentage bias between the

leave-one-out cross-validation and the measured plot values

was 13.6%, 12.7% and 23.0% for AGB, WP and stem mortality

rate respectively.

We do not intend the kriged maps to be a detailed, accurate

description of Amazon forest properties: ecological patterns

are a mix of smooth gradients (e.g. related to climate) and

more abrupt boundaries (e.g. related to edaphic properties)

that cannot be shown using these methods. Rather, we intend

these maps as broad scale tools to provide a means of evaluat-

ing the performance of the vegetation models.

Finally, we compared how well the DGVMs captured the

mean and variability in AGB, WP and sw (calculated using

average values for WP and AGB across all grid cells for 2000–

2008 from model outputs using Eqn 1) for grid cells where

there is observational data, and contrast the controls on AGB

between observations and models in terms of WP and mortal-

ity. We acknowledge that the models will predict a small

increase in WP over the time period of study due to CO2 fertil-

ization (~0.35 Mg C ha�1 a�1; Lewis et al., 2009). However, the

effect of this process on estimates of sw is small.

Results

Observed links between woody biomass, mortality and
productivity

There is a strong variation in AGB (F3,163 = 72.1,

P < 0.001), l (F3,163 = 23.6, P < 0.001) and WP

(F3,163 = 22.7, P < 0.001) among the four regions, but not

WL (F3,163 = 1.49, ns; Table 1, Fig. 2). Forests on the Gui-

ana Shield are characterized by the highest AGB of all

Amazonian forests, associated with low stem mortality

rates and high WP (Fig. 2a–c). East-central Amazon for-

ests also have comparatively high AGB and similar, very

low stem mortality rates. However, WP is lower in these

sites (Fig. 2b). Compared with these regions, forests in

the western Amazon and on the Brazilian Shield have

lower AGB. However, the lower biomass in these two

regions is associated with different patterns inWP. In the

western Amazon, the lower biomass values are associ-

ated with high WP (Fig. 2a–c). In contrast, the particu-

larly low biomass forests of the Brazilian Shield have

high rates of stemmortality and lowWP (Fig. 2a–c).

Analysis of the relationships using generalized

least squares allows the relative importance of WP

and l for determining AGB to be explored in more

detail. Stem mortality rate is the key parameter that

controls variation in AGB (Table 2, Fig. 4c). This rela-

tionship between AGB and stem mortality rates is

not because there is a correlation between AGB and

stem number, as these two variables are unrelated

(Fig. S6). In contrast, the alternative measure of mor-

tality, WL, is not related to AGB (Fig. 4b): all models

including stem mortality rates, rather than WL, show

substantially better fit and lower AIC values

(Table 2).

The effect of stem mortality rate on AGB also differs

among regions (Fig. 4c). For example, for a stem mortal-

ity rate of 1.5% yr�1, forests on the Guiana Shield store

approximately 75% more carbon as (above-ground)

wood than forests on the Brazilian Shield (Fig. 4c). In

addition, the strength of the relationship between AGB

and stem mortality rates varies among regions: the

slope of this relationship is comparatively shallow

among the plots in western Amazonia (Fig. 4c). Finally,

WP is significantly positively correlated with variation

in AGB, although the relationship is weak (Table 2,

Fig. 4a).

Model projections and comparison with observations

The comparisons of simulated AGB and above-ground

WP reveal considerable differences both between the

individual models and between the models and obser-

vations (Table 3, Figs 5, 6, S7 and S8). For the whole of

Table 1 Observed forest properties (mean � SE) calculated from plot data for each region of Amazonia

Basin Guiana Shield

East-central

Amazon

Western

Amazon Brazilian Shield

Mean above-ground biomass (Mg C ha�1) 153.48 � 2.82

n = 413

211.91 � 5.03

n = 110

167.64 � 4.95

n = 78

126.26 � 2.38

n = 149

107.73 � 4.48

n = 76

Mean above-ground woody productivity

(Mg C ha�1 yr�1)

2.97 � 0.06

n = 167

3.51 � 0.13

n = 41

2.41 � 0.07

n = 37

3.06 � 0.07

n = 76

2.40 � 0.15

n = 13

Stem-based mortality rate (% yr�1) 1.96 � 0.08

n = 167

1.66 � 0.16

n = 41

1.38 � 0.08

n = 37

2.62 � 0.12

n = 76

3.19 � 0.38

n = 13

Mean above-ground biomass losses

(Mg C ha�1 yr�1)

2.46 � 0.13

n = 167

3.06 � 0.44

n = 41

2.12 � 0.16

n = 37

2.43 � 0.15

n = 76

1.57 � 0.12

n = 13

Mean wood density (g cm�3) 0.63 � 0.00

n = 413

0.69 � 0.00

n = 110

0.67 � 0.01

n = 78

0.58 � 0.00

n = 149

0.61 � 0.01

n = 76

Basal area (m2 ha�1) 26.64 � 5.53

n = 413

29.10 � 0.49

n = 110

28.24 � 0.51

n = 78

25.98 � 0.41

n = 149

22.73 � 0.66

n = 76
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the Amazon basin, mean AGB is highest for ORCHI-

DEE, and lowest for INLAND; in contrast, woody NPP

is highest for LPJmL and lowest for JULES (Table 3).

Compared with the plots, different models over- and

underestimate mean AGB (Table 3). However, the

model ensemble mean AGB value (163.87 Mg C ha�1) is

close to the observed mean (153.48 Mg C ha�1). In con-

trast, all models overestimate above-ground WP

Fig. 2 Boxplots of plot measurements of (a) above-ground biomass, (b) above-ground woody productivity, (c) stem mortality rates and

(d) absolute rates of woody biomass loss in four regions of Amazonia. Gu Shld = Guiana Shield, EC Amaz = East Central Amazon,

W Amaz = Western Amazon, B Shld = Brazilian Shield.

Table 2 Generalized least squares models relating AGB to variation in (A) above-ground woody productivity (WP), stem mortality

rates (l) or rates of woody biomass loss (WL); (B) l and WP; (C) WL and WP among 167 plots across four regions of Amazonia. Mod-

els incorporated region as an additional factor and interactions as appropriate. Terms for mortality were log-transformed before

analysis. All models incorporated a Gaussian spatial error correlation structure to account for spatial autocorrelation. The model

with the strongest support is highlighted in bold; this model was used to quantify the relationships in Fig. 3

Model Terms Interactions Log likelihood AIC Pseudo r squared

A. Including either mortality or growth

1 l, Region �813.7 1643.3 0.65

2 WL, Region �830.1 1676.3 0.57

3 WP, Region �829.3 1674.5 0.58

B. Including WP and l as mortality term

4 WP, l, Region �810.8 1639.6 0.66

5 WP, l, Region l 9 Region �805.0 1634.0 0.68

6 WP, l, Region WP 9 Region �808.8 1641.6 0.67

C. Including WP and WL as mortality term

7 WP, WL, Region �829.0 1676.1 0.58

8 WP, WL, Region WL 9 Region �826.7 1677.4 0.59

9 WP, WL, Region WP 9 Region �826.6 1677.2 0.59

AGB, above-ground biomass.
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compared with the mean for the plots, by between 36%

(JULES) and 234% (LPJmL; Table 3, Fig. 5). Variation in

sw inevitably reflects the variation in mean AGB and

woody NPP with average values for ORCHIDEE and

JULES (27.9 and 33.2 years) approximately twice the

values for INLAND and LPJmL (16.7 and 17.5 years).

There are considerable differences between the obser-

vations and the predictions across the four models in

the spatial variability of AGB and WP (Figs 5, 6 and S7).

JULES and INLAND both simulate very little spatial

heterogeneity in AGB in the Amazon basin, in contrast

to the strong pattern in the observations: compared

with the observations, they simulate a very narrow

range of AGB values and underestimate both the AGB

of the Guiana Shield and the basin as a whole (Table 3,

Fig. 5c, e). LPJmL and ORCHIDEE display greater vari-

ability in their predictions of AGB (Fig. 5g, i). However,

LPJmL predicts highest AGB in the north-west of the

basin in contrast to the observations (Fig. 5i). ORCHI-

DEE is the only model that provides a reasonable

match with the spatial patterns in the observations, but

this model still overestimates AGB for most of the basin

compared with the plot observations (Table 3, Fig. 5g).

In terms of WP, LPJmL (Fig. 5j) is the only model that

captures the higher observed values in the Guiana

Shield and Western Amazon compared with the Brazil-

ian Shield and East-central Amazon (Fig. 5b). In con-

trast, INLAND, ORCHIDEE and JULES simulate very

little variability in WP across the majority of basin

(Fig. 5d, f, h).

For all models, the spatial variation in sw is similar to

that of AGB (Fig. 6). LPJmL demonstrates the greatest

spatial variation in residence times with the highest val-

ues found in the north-west of the basin (Fig. 6). JULES

and INLAND display little variation in sw across the

basin. Overall, JULES, LPJmL and INLAND display a

much stronger positive relationship between woody

NPP and AGB (Fig. 7) than seen in the observations

(Fig. 4a), although the form of this relationship varies.

In contrast, the relationship predicted by ORCHIDEE

matches the variability and form of the relationship

between woody NPP and AGB from the plot data com-

paratively well (Fig. 7).

Simulated AGB and WP from all four models show

strong relationships with climatological drivers. Corre-

lations between WP and precipitation are particularly

strong for INLAND and LPJmL and all models apart

from JULES exhibit strong correlations between rainfall

and AGB (Fig. S9). Weaker correlations are observed

between temperature and short-wave radiation and

simulated WP and AGB (Fig. S10).

Discussion

Understanding spatial variation in the AGB of Amazon
forests

Overall, our results extend and enrich the original para-

digm concerning the controls on forest dynamics in

Table 3 Basin mean values, standard errors and root mean square error (RMSE) for above-ground wood biomass (AGB; Mg C

ha�1) and above-ground woody net primary productivity (woody NPP; Mg C ha�1 yr�1) from the plot observations and mean val-

ues from four DGVMs for the plot locations. A below-ground to above-ground allocation ratio of 0.21 is applied to the DGVM val-

ues to convert from total NPP wood to above-ground woody NPP

Model

AGB (Obs mean = 153.48) WP (Obs mean = 2.97)

AGB wood AG NPP wood

ORCHIDEE JULES INLAND LPJmL ORCHIDEE JULES INLAND LPJmL

Model mean 218.00 � 3.16 137.93 � 2.09 125.43 � 1.35 174.10 � 2.89 7.80 � 0.10 4.05 � 0.09 7.46 � 0.11 9.92 � 0.10

RMSE 91.84 76.98 61.36 73.65 5.00 1.89 4.73 7.06

NPP, net primary productivity; DGVMs, dynamic global vegetation models.

Fig. 3 Relationship between woody net primary productivity

(NPP) and stem mortality rates for 167 forest plots in four

regions of Amazonia.
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Amazonia. The previous paradigm described corre-

lated west to east gradients in WP, stem mortality rates

and AGB across the Amazon basin, maintained by a

soil-mediated, positive feedback mechanism (Malhi

et al., 2004; Quesada et al., 2012). Our findings agree

that variation in mortality is the key driver of variation

in AGB across Amazonian forests (Table 2, Fig. 4).

However, our results modify the current paradigm

about variation in forest dynamics in Amazonia in four

important ways.

Firstly, the plot data demonstrate that there is no cor-

relation between WP (above-ground woody productiv-

ity) and stem mortality rates with the new, broader

data set: they vary independently (Fig. 3). Previous

studies have strongly focused on western Amazonia

and some East-central Amazon sites. However, the

inclusion of data from the Guiana Shield in particular

demonstrates that low stem mortality rates can also be

associated with high WP (Fig. 3).

Secondly, our results demonstrate that variation in

stem mortality rates, rather than absolute rates of car-

bon loss, is the key aspect of mortality that determines

variation in AGB. The lack of correlation between AGB

and absolute rates of biomass loss (Fig. 4b) is somewhat

surprising: for a forest stand at approximately steady

state, we might expect this relationship to at least mir-

ror the weak correlation between AGB and stand WP

(Fig. 4a). This result may be because estimates of abso-

lute AGB loss are subject to greater sampling error than

WP due to stochastic variation in tree mortality (e.g. see

wide variation in values on the x axis of Fig. 4b). Sam-

pling over longer time intervals may reveal stronger

correlations between absolute rates of biomass loss and

AGB.

In contrast to these patterns for absolute rates of loss

of biomass, there are strong relationships between stem

mortality rates and AGB (Fig. 4c). This result suggests

that variation in the numbers and diameters of trees

that die in different locations is a key control on AGB:

high rates of stand-level biomass loss and WP can be

associated with high AGB if stem mortality rates are

low, and biomass loss is concentrated in a few large

trees, but can also be associated with comparatively

low AGB if stem mortality rates are high, and mortality

is concentrated in a larger number of smaller trees

(Fig. 4). Stem mortality rates may influence AGB

because they affect the size structure of forests: demo-

graphic theory demonstrates how higher stem mortal-

ity rates are associated with a steeper slope of tree size/

frequency distributions and therefore fewer large trees

(Coomes et al., 2003; Muller-Landau et al., 2006). In

turn, variation in the number of large trees is a key pre-

dictor of spatial variation in biomass among forest plots

(e.g. Baker et al., 2004; Baraloto et al., 2011). Impor-

tantly, this result indicates that incorporating stem

diameter distributions within modelling frameworks

will be important for obtaining accurate predictions of

AGB.

Thirdly, our results resolve a paradox in the original

paradigm – that WP showed a negative correlation with

AGB (Malhi, 2012). Here, with a broader range of sites,

the expected positive correlation is found, although the

strength of the relationship remains weak (Fig. 4a). Pos-

itive correlations between AGB and WP are a feature of

the output of DGVMs (e.g. Fig. 7). This analysis, at least

to an extent, demonstrates consistency between one

aspect of the models and the data, although the

Fig. 4 Relationships between AGB and (a) woody NPP, (b) absolute rates of woody biomass loss and (c) stem mortality rates for 167

forest plots in four regions of Amazonia. Lines relate to significant relationships as given by final statistical model in Table 3. NPP, net

primary productivity; AGB, above-ground biomass.
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strength of the observed relationship is much weaker

than that specified by the models (Figs 4a and 7).

Fourthly, the vertical offsets of the relationships

between stem mortality rates and AGB among regions

suggest that variation in the identity and height/di-

ameter allometry of trees in different parts of Amazo-

nia is also important for understanding variation in

AGB. For example, observations from plots on the

Guiana Shield show that these forests have very high

AGB values for a given stem mortality rate (Fig. 4c),

associated with surprisingly high WP (Fig. 4a). This

result implies that AGB is concentrated within trees

with greater heights and/or higher wood density in

these forests compared with other regions. A combi-

nation of good soil structural properties that promotes

low stem mortality rates, and relatively high soil

phosphorus concentrations that promote high produc-

tivity (Quesada et al., 2012) could conceivably allow

these forests to attain the combination of high basal

area, tree heights and wood density that results in

particularly high AGB. Comparatively high levels of

soil fertility are possible as this region may receive

significant additions of inorganic phosphorus and

other mineral nutrients from dust deposits; this region

of the Amazon is believed to receive the highest

amounts of dust from Saharan Africa (Mahowald

et al., 1999, 2005). Alternatively, the greater heights,

wood density and WP of these forests may be related

to their distinctive taxonomic composition; these for-

ests contain a high proportion of stems of large-sta-

tured species of Leguminosae (ter Steege et al., 2006).

These species may achieve greater phosphorus-use

efficiency during photosynthesis or allocate a greater

proportion of NPP to woody growth – both are pro-

cesses that lead to higher AGB forests (Malhi, 2012).

Variation in species composition, or biogeography,

related to historical patterns of species dispersal over

long timescales is known to be a factor in determining

the high AGB and WP of forests in Borneo compared

with Amazonia (Banin et al., 2014). Similar processes

may also be important within Amazon forests.

Conversely, forests on the Brazilian Shield towards

the southern margins of Amazonian forests have par-

ticularly low AGB for a given stem mortality rate,

associated with generally low values for WP and high

values of l (Marimon et al., 2014; Fig. 4). Such low

woody productivity, high stem mortality rates and

potentially low stature forest in these locations are

likely to be caused by repeated moisture stress and/

or fire (Phillips et al., 2009; Brando et al., 2014):

towards the southern margins of Amazonia, AGB

approximately halves with a doubling in moisture

stress quantified using the maximum climatological

water deficit (Malhi et al., 2015).

Overall, our findings emphasize the pre-eminent role

of variation in stem mortality rates for controlling AGB,

but indicate that variation in woody NPP is also impor-

tant. They also emphasize how the links between AGB,

tree growth and mortality are modified by species com-

position and the allocation of carbon to dense or light

wood, or growth in height (Fig. 4c). Clearly, more com-

prehensive analyses of these sites including environ-

mental data (cf Quesada et al., 2012) are required to

tease apart the underlying drivers of these patterns.

Additional data from low AGB forests in stressful envi-

ronments across Amazonia, such as on white sand or

peat (Baraloto et al., 2011; Draper et al., 2014), would

also be valuable. Such low AGB forests have typically

been excluded from ecosystem monitoring but may

prove particularly informative to constrain the form of

the relationships between WP, stem mortality rates and

AGB.

Finally, our results suggest that the sensitivity of

AGB to variation in stem mortality rates is greater in

high AGB forests which have the lowest stem mortality

rates (Fig. 4c). Increasing mortality rates are a feature

of many threats faced by tropical forests, whether dri-

ven by increased growth, drought or fire, and extrapo-

lations from forest plot data have been used to argue

that such increases may substantially reduce the carbon

stocks and carbon sink potential of these ecosystems

(e.g. Lewis, 2006; Brienen et al., 2015). Our results indi-

cate that forests with the highest AGB values will be

most sensitive to a given increase in stem mortality

rates (Fig. 4c). In addition, our results suggest that

there may be regional differences in the sensitivity of

the carbon stocks of Amazonian forests to changing

stem mortality rates. For example, increases in stem

mortality rates in the Guianas will not lead these forests

to become structurally identical to western Amazon for-

ests; they will follow their own trajectory related to

their distinctive composition (Fig. 4c).

Understanding spatial patterns in model simulations

Simulated AGB in the four DVGMs depends on the bal-

ance of woody NPP and losses due to the turnover of

woody tissue, ‘background’ mortality, specific pro-

cesses such as drought, or more generic ‘disturbance’

(Table 4). Here, we consider how these models simu-

late woody NPP and mortality to understand simulated

patterns of AGB.

Woody NPP in JULES is not responsive to the vari-

ability in climate and soils across the main part of the

Amazon basin and this model therefore simulates little

variation in WP across this region (Fig. 5). This pattern

translates into little variation in simulated AGB across

much of Amazonia because mortality is essentially

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13315

STEM MORTALITY CONTROLS FOREST BIOMASS 11



constant in JULES (Table 4) and simulated sw is largely

invariant (Figs 5 and 6). As a result, there is a positive

relationship between simulated AGB and NPP for this

model (Fig. 7). However, interestingly, the relationship

between AGB and NPP in JULES is nonlinear and sug-

gests that there is an upper limit to the amount of AGB

that can be simulated in JULES. This arises from the

particular allocation scheme used in JULES where NPP

is partitioned into biomass growth of existing vegeta-

tion or into ‘spreading’ of vegetated area (Cox, 2001).

This partitioning into growth/spreading is regulated

by LAI so that as LAI increases, less NPP is allocated to

biomass growth. In this formulation, a maximum LAI

value is prescribed which effectively sets a cap on bio-

mass growth in the model, as at this point all of the

NPP is directed into ‘spreading’ and none of it into

growth of the existing vegetation. When a PFT occupies

all of the available space in a grid cell and therefore

cannot expand in area, all of the NPP effectively enters

the litter via an assumed ‘self-shading’ effect (Table 4;

Huntingford et al., 2000).

INLAND simulates slightly more variation in WP

across the basin than JULES. However, most of this

variation is observed at the basin fringes, which may be

explained by INLAND’s nonlinear relationship

between WP and rainfall; where annual rainfall exceeds

2 m yr�1, simulated WP does not vary with changes in

precipitation (Fig. S9). As a result, there is a very strong

relationship between AGB and NPP (Fig. 7), and AGB

varies little across Amazonia, similar to JULES (Fig. 5).

Productivity in LPJmL is much more strongly related

to rainfall and MWD than either JULES or INLAND

(Fig. S9), which is consistent with previous studies that

have shown LPJ to be more sensitive to soil moisture

stress than other models such as MOSES-TRIFFID, the

precursor model to JULES (Galbraith et al., 2010). As a

result, we observe more spatial variation across the

basin in WP. More generally, mortality is also more

complex in this model and is a function of negative

growth, heat stress and bioclimatic limits and includes

disturbance from fire (Table 4; Sitch et al., 2003). As

result, in contrast to the other models, there are correla-

tions between sw, rainfall and MWD in LPJmL (Fig. S9)

resulting in substantial spatial variation in AGB and

the highest AGB values in the wet, north-west of the

basin.

ORCHIDEE also demonstrates spatial variation in

WP which is nonlinearly correlated with rainfall

(Fig. S9). Carbon residence times and AGB in ORCHI-

DEE are similarly, but more strongly, correlated with

rainfall and MWD than WP, and as a result, there is a

greater variability in the relationship between AGB and

NPP for this model (Fig. 7) and greater spatial variation

in AGB (Fig. 5).

How can we improve simulations of spatial variation in
DGVMs based on the observations?

A possible explanation for some of the disparities

between the observations and model simulations may be

the differences in how disturbance influences both data-

sets: the forest plots will experience the full range of dis-

turbances that occur in natural forest, whilst the

simulations are limited to reflecting only the effect of

modelled processes. However, in broad terms, the degree

and intensities of disturbance are likely to be comparable:

amongst the DVGMs in this study, mortality is modelled

based on a wide range of relevant processes – a back-

ground rate due to tree senescence, competition for light,

drought and externally forced disturbance (Table 4). Rare

but intense, large-scale disturbances related to blow-

downs are excluded from the simulations and such dis-

turbances can have landscape-scale effects (Chambers

et al., 2013), but their extreme rarity and patchiness at a

regional scale makes it unlikely that they substantially

alter or determine broad scale patterns of forest structure

and dynamics (Espı́rito-Santo et al., 2014).

A key finding from the observational data is that

variation in stem mortality rates determines spatial

variation in AGB (Fig. 3). This finding implies that mor-

tality must be modelled on the basis of individual

Table 4 Comparison of woody biomass mortality/turnover

schemes used by the four DGVMs of this study. Where speci-

fic values are provided, these relate to the dominant PFT

assumed by the models over our area of study

INLAND JULES LPJmL ORCHIDEE

1. Turnover of woody tissue

Fixed/

variable

Fixed Fixed Variable Fixed

Woody

turnover

time (sw)

25 years 200 years 30 years

2. Background disturbance rate

Yes/No? Yes Yes No No

% a�1 0.05 0.05

3. Specific drivers of mortality

Negative

carbon

balance

No No Yes No

Fire Yes No Yes No

Drought No No Yes No

Competition

for light

No Yes Yes No

References Kucharik

et al.

(2000)

Clark

et al.

(2011)

Sitch

et al.

(2003)

Delbart

et al.

(2010)

DGVMs, dynamic global vegetation models.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5 Kriged maps of above-ground biomass and woody productivity from RAINFOR forest plot observations and simulated mean

above-ground biomass and woody NPP for 2000–2008 for four DGVMs. All maps are presented on the same scale; Fig. S7 displays

kriged maps of the observations on independent scales. NPP, net primary productivity; DGVMs, dynamic global vegetation models.
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stems, and suggests stem-size distributions are impor-

tant for predicting variation in AGB. However, the

architecture of the DVGMs in this study does not incor-

porate stem-size distributions, or individual-based

mortality rates. In contrast, three of the four models in

this study employ a fixed value of sw (a PFT-specific

woody turnover rate, Table 4), to model a background

rate of woody biomass loss, related to growth. In the

models where these constant terms dominate mortality

(e.g. JULES/INLAND), inevitably, the patterns of AGB

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Kriged maps of (a) above-ground biomass losses and (b) stem mortality rates from RAINFOR forest plot observations and simu-

lated mean residence time (s = AGB/WP) for 2000–2008 for four DGVMs: (c) INLAND, (d) LPJmL, (e) ORCHIDEE and (f) JULES.

DGVMs, dynamic global vegetation models; AGB, above-ground biomass.
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mirror those of WP and do not match the observations.

Even in ORCHIDEE which simulates the highest bio-

mass in the north-east of the basin similar to the obser-

vations (Fig. 5), this apparent correspondence between

the model and observations is not because this model

effectively models tree mortality: like JULES and

INLAND, ORCHIDEE also employs a constant mortal-

ity rate (Table 4; Delbart et al., 2010). In addition, the

finding that variation in stem mortality determines

variation in AGB implies that introducing simple rela-

tionships between mortality and WP, such as linking sw

to NPP (Delbart et al., 2010) will not improve predic-

tions for the whole basin. For example, the forests of

the Guiana Shield, where forests have high WP and

high AGB but low stem mortality rates, will not be

accurately modelled using the technique employed by

Delbart et al. (2010).

A second key reason for discrepancies between the

observations and models is that the key processes driv-

ing variation in the observations differ from the mod-

elled processes. For example, when mortality is

included as a dynamic process in the DGVMs, such as

in LPJmL, mortality strongly reflects the variability in

that process: moisture stress across the basin in the

context of LPJmL. In contrast, stem mortality rates in

Amazonian plots ultimately strongly respond also to

edaphic properties such as soil physical properties

(Quesada et al., 2012).

These findings suggest several ways in which veg-

etation models could be developed. Firstly, mortality

needs to be effectively incorporated in these models,

preferably through incorporating stem mortality

rates (l), rather than average carbon residence times

(sw), as a means of modelling the loss of woody

carbon. The process of stem mortality is much more

amenable for linking with the ultimate drivers of

tree death, such as hydraulic failure, and is the key

driver of variation in the size structure and AGB of

Amazonian forests. We note that there have been

positive advances in modelling mortality processes

more mechanistically in DGVMs (e.g. Fisher et al.,

2010, 2015) and that there is a considerable focus at

present in improving the representation of vegeta-

tion dynamics in DGVMs (e.g. Verbeeck et al., 2011;

De Weirdt et al., 2012; Castanho et al., 2013; Haverd

et al., 2014; Weng et al., 2015). Secondly, DGVMs

need to focus on including more functional diversity

and variation in height/diameter relationships to

Fig. 7 Simulated mean above-ground wood biomass (2000–2008) against simulated mean above-ground woody net primary productiv-

ity (2000–2008) for four DGVMs: (a) ORCHIDEE, (b) JULES, (c) INLAND and (d) LPJmL. DGVMs, dynamic global vegetation models.
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capture regional differences in the carbon dynamics

of Amazon forests. Thirdly, mortality processes need

to be linked to edaphic properties such as a mea-

sure of soil structure/stability, and WP to spatially

varying soil nutrients to ensure that not only climate

stress influences the spatial variation of AGB that is

predicted by DGVMs. Finally, our study highlights

the importance of size structure in shaping forest

dynamics. To model tropical forest dynamics effec-

tively, ‘average individual’ approaches which do not

account for size distributions in tropical forests are

insufficient. Several different aspects of these recom-

mendations are already being implemented in

emerging model frameworks (e.g. Fyllas et al., 2014;

Sakschewski et al., 2015) and we look forward to

testing the predictions of the next generation of veg-

etation models against baseline datasets of forest

structure and dynamics.
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Krinner G, Viovy N, De Noblet-Ducoudré N et al. (2005) A dynamic global vegetation

model for studies of the coupled atmosphere-biosphere system. Global Biogeochemi-

cal Cycles, 19, GB1015.

Kucharik CJ, Foley JA, Delire C et al. (2000) Testing the performance of a dynamic

global ecosystem model: water balance, carbon balance, and vegetation structure.

Global Biogeochemical Cycles, 14, 795–825.

Lewis SL (2006) Tropical forests and the changing earth system. Transactions of the

Royal Society of London (Series B), 361, 195–210.

Lewis SL, Lloyd J, Sitch S, Mitchard ET, Laurance WF (2009) Changing ecology of tro-

pical forests: evidence and drivers. Annual Review of Ecology, Evolution, and Sys-

tematics, 40, 529–549.

Lewis SL, Phillips OL, Sheil D et al. (2004) Tropical forest tree mortality, recruitment

and turnover rates: calculation, interpretation and comparison when census inter-

vals vary. Journal of Ecology, 92, 929–944.

Lopez-Gonzalez G, Lewis SL, Burkitt M, Phillips OL (2011) ForestPlotsnet: a new web

application and research tool to manage and analyse tropical forest plot data. Jour-

nal of Vegetation Science, 22, 610–613.

Lopez-Gonzalez G, Lewis SL, Burkitt M, Baker TR, Phillips OL (2012) ForestPlots.net.

Available at: www.forestplots.net (accessed 01 September 2013).

Lopez-Gonzalez G, Mitchard ETA, Feldpausch TR et al. (2014) Amazon forest bio-

mass measured in inventory plots Plot Data from “Markedly divergent estimates

of Amazon forest carbon density from ground plots and satellites”. ForestPlots-

NET, doi:105521/FORESTPLOTSNET/2014_1.

Mahowald N, Kohfeld K, Hansson M et al. (1999) Dust sources and deposition during

the last glacial maximum and current climate: a comparison of model results with

paleodata from ice cores and marine sediments. Journal of Geophysical Research:

Atmospheres (1984–2012), 104, 15895–15916.

Mahowald NM, Artaxo P, Baker AR, Jickells TD, Okin GS, Randerson JT, Townsend

AR (2005) Impacts of biomass burning emissions and land use change on Amazo-

nian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles,

19, GB4030.

Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vege-

tation. Journal of Ecology, 100, 65–75.

Malhi YM, Meir P, Brown S (2002) Forest, carbon and global climate. Philosophical

Transactions of the Royal Society (Series B), 360, 1567–1591.

Malhi Y, Baker TR, Phillips OL et al. (2004) The above-ground coarse wood produc-

tivity of 104 Neotropical forest plots. Global Change Biology, 10, 563–591.

Malhi Y, Wood D, Baker TR et al. (2006) The regional variation of above-ground live

biomass in old-growth Amazonian forests. Global Change Biology, 12, 1107–1138.

Malhi Y, Aragao LEO, Metcalfe DB et al. (2009) Comprehensive assessment of carbon

productivity, allocation and storage in three Amazonian forests. Global Change Biol-

ogy, 15, 1255–1274.

Malhi Y, Doughty CE, Goldsmith GR et al. (2015) The linkages between photosynthe-

sis, productivity, growth and biomass in lowland Amazonian forests. Global

Change Biology, 21, 2283–2295.

Marimon BS, Marimon-Junior BH, Feldpausch TR et al. (2014) Disequilibrium and

hyperdynamic tree turnover at the forest–cerrado transition zone in southern

Amazonia. Plant Ecology & Diversity, 7, 281–292.

Marthews T, Quesada C, Galbraith D, Malhi Y, Mullins C, Hodnett M, Dharssi I

(2014) High-resolution hydraulic parameter maps for surface soils in tropical

South America. Geoscientific Model Development, 7, 711–723.

Meir P, Wood TE, Galbraith DR, Brando PM, da Costa ACL, Rowland L, Ferreira LV

(2015) Threshold responses to soil moisture deficit by trees and soil in tropical rain

forests: insights from field experiments. BioScience, 65, 882–892.

Mitchard ET, Feldpausch TR, Brienen RJ et al. (2014) Markedly divergent estimates of

Amazon forest carbon density from ground plots and satellites. Global Ecology and

Biogeography, 23, 935–946.

Muller-Landau HC, Condit RS, Chave J et al. (2006) Testing metabolic ecology theory

for allometric scaling of tree size, growth and mortality in tropical forests. Ecology

Letters, 9, 575–588.
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