1,329 research outputs found

    A two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps

    Get PDF
    We report on a scheme to improve the pointing stability of the first order beam diffracted by an acousto-optic modulator (AOM). Due to thermal effects inside the crystal, the angular position of the beam can change by as much as 1 mrad when the radio-frequency power in the AOM is reduced to decrease the first order beam intensity. This is done for example to perform forced evaporative cooling in ultracold atom experiments using far-off-resonant optical traps. We solve this problem by driving the AOM with two radio-frequencies f1f_1 and f2f_2. The power of f2f_2 is adjusted relative to the power of f1f_1 to keep the total power constant. Using this, the beam displacement is decreased by a factor of twenty. The method is simple to implement in existing experimental setups, without any modification of the optics

    Observations of a ^3He-rich SEP Event over a Broad Range of Heliographic Longitudes: Results from STEREO and ACE

    Get PDF
    Observations of energetic ions and electrons from STEREO and ACE have been used to investigate the longitudinal extent of particle emissions from 3He ‐rich solar energetic particle (SEP) events. In the event of 3–4 Nov 2008, ions and electrons were detected 20° ahead and behind the nominal connection from the source region to 1 AU, and electrons were also detected 60° ahead. The results are consistent with those of earlier studies that correlated data from near‐Earth spacecraft with Helios data or with observations of source regions on the Sun

    The Black Hole of Transport Logistics Efficiency: A Multi-Method Study on Yard Management

    Get PDF
    ABSTRACT Yard management is crucial for warehouse efficiency, as it accelerates and aligns incoming and outgoing material flows at these sites. This is especially relevant in modern logistics and supply chain management because recent market trends demand increasing product assortments, which must be produced, processed, and delivered in ever shorter times. While efficiency improvements within warehouses have received considerable interest in operations management research, prior studies have generally failed to establish how to design and evaluate processes at warehouse sites. Research on decision prioritisation regarding critical sub-processes in yard management could offer interesting new insights, helping to increase overall warehouse efficiency through the prioritisation of critical optimisation sub-processes. Accordingly, this paper examines the prioritisation and evaluation of critical yard sub- processes for efficient yard management at warehouse sites. A multi-method research approach is applied, combining analytic hierarchy process (AHP) interviews with a detailed literature review and quantitative empirical data analysis to allow for triangulation of the results to develop theoretical contributions and practical implications. Five critical yard sub-processes are identified and prioritised: management of the shunting system, registration at the gateway, allocation of trucks to gates/parking spaces, removal of a transport unit from the gate, and exit control

    Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels

    Get PDF
    Accurate manipulations of an open quantum system require a deep knowledge of its controllability properties and the information content of the implemented control fields. By using tools of information and quantum optimal control theory, we provide analytical bounds (information-time bounds) to characterize our capability to control the system when subject to arbitrary sources of noise. Moreover, since the presence of an external noise field induces open quantum system dynamics, we also show that the results provided by the information-time bounds are in very good agreement with the Kofman–Kurizki universal formula describing decoherence processes. Finally, we numerically test the scaling of the control accuracy as a function of the noise parameters, by means of the dressed chopped random basis (dCRAB) algorithm for quantum optimal control

    Measurement of the production cross section for W-bosons in association with jets in pp collisions at s=7 TeV with the ATLAS detector

    Get PDF
    This Letter reports on a first measurement of the inclusive W + jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W-boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma (W + >= n)/sigma(W + >= n - 1) for inclusive jet multiplicities n = 1-4. The results, based on an integrated luminosity of 1.3 pb(-1), have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n <= 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicitie

    Analyzing the collective emission of a Rydberg-blockaded single-photon source based on an ensemble of thermal atoms

    Get PDF
    An ensemble of rubidium atoms can be excited with lasers such that it evolves into an entangled state with just one collective excitation within the Rydberg-blockade radius. The decay of this state leads to the emission of a single antibunched photon. For a hot vapor of rubidium atoms in a microcell, we numerically study the feasibility of such a single-photon source under different experimental conditions like the atomic density distribution and the choice of electronic states addressed by the lasers. For the excitation process with three rectangular lasers pulses, we simulate the coherent dynamics of the system in a truncated Hilbert space. We investigate the radiative behavior of the moving rubidium atoms and optimize the laser pulse sequence accordingly. We find that the collective decay of the single excitation leads to a fast and directed photon emission and further that a pulse sequence similar to a spin echo increases the directionality of the photon. Finally, we analyze the residual double excitations and find that they do not exhibit these collective decay properties and play only a minor deleterious role

    Measurement of top quark–antiquark pair production in association with a W or Z boson in pp collisions at √s=8 TeV

    Get PDF
    Peer reviewe

    Observation of the diphoton decay of the Higgs boson and measurement of its properties

    Get PDF
    Peer reviewe

    Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at √s = 8 TeV

    Get PDF
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMA measurement is presented of differential cross sections for Higgs boson (H) production in pp collisions at √s = 8TeV. The analysis exploits the H→γγ decay in data corresponding to an integrated luminosity of 19.7fb-1 collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities |η|1/3 and >1/4, the total fiducial cross section is 32±10fbWe acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23- 6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET(European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foun-dation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National PrioritiesResearch Program by QatarNationalResearch Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-184
    corecore