78 research outputs found

    Gamma ray astronomy above 30 TeV and the IceCube results

    Get PDF
    The study of the diffuse Galactic gamma ray emission is of fundamental importance to understand the properties of cosmic ray propagation in the Milky Way, and extending the measurements to E ≳ 30 TeV is of great interest. In the same energy range the IceCube detector has also recently observed a flux of astrophysical neutrinos, and it is important to test experimentally if the neutrino production is accompanied by a comparable emission of high energy photons. For E ≳ 30 TeV, the absorption effects due to e+e− pair production when the high energy photons interact with radiation fields present in space are not negligible and must be taken into account. Gamma rays, in good approximation, are completely absorbed if they have an extragalactic origin, but the absorption is significant also for Galactic photons. In this case the size and angular dependence of the absorption depends on the space distribution of the emission. In this work we estimate the absorption for different models of the space distribution of the gamma ray emission, and discuss the potential of future detectors

    Measuring space-time fuzziness with high energy γ-ray detectors

    Full text link
    There are several suggestions to probe space-time fuzziness (also known as space-time foam) due to the quantum mechanics nature of space-time. These effects are predicted to be very small, being related to the Planck length, so that the only hope to experimentally detect them is to look at particles propagating along cosmological distances. Some phenomenological approaches suggest that photons originating from pointlike sources at cosmological distance experience path length fluctuation that could be detected. Also the direction of flight of such photons may be subject to a dispersion such that the image of a point-like source is blurred and detected as a disk. An experimentally accessible signature may be images of point-like sources larger that the size due to the Point Spread Function of the instrument. This additional broadening should increase with distance and photon energy. Some concrete examples that can be studied with the AGILE and FERMI-LAT γ -ray satellite experiments are discussed

    AGILE TGFS AND GLOBAL LIGHTNING ACTIVITY

    Get PDF
    [1] The AGILE satellite detects Terrestrial Gamma-ray Flashes (TGFs) in the 0.35–100 MeV energy range using its Mini-Calorimeter (MCAL) instrument with an average detection rate of 10 TGFs/month. Thanks to its Low Earth Orbit with only 2.5 degree of inclination, AGILE guarantees an unprecedented exposure above the equator, where both lightning activity and TGF detection peak. Here we report the comparison between the AGILE TGFs detected between March 2009 and February 2010 and full climatology lightning worldwide distribution based on satellite optical observations from LIS (Lightning Imaging Sensor) and OTD (Optical Transient Detector) instruments. This approach is complementary to the one-to-one TGF/lightning correlations by ground-based sferics measurements. Based on mono and bi-dimensional Kolmogorov-Smirnov tests, we show that the AGILE TGFs and time-averaged global lightning in the equatorial area are not drawn from the same distribution. However, we find significant regional differences in the degree of correlation as well as in the TGF/lightning ratio. In the case of south east Asia we find a 87% probability for the TGF and lightning being samples of the same distribution. This result supports the idea that the physical conditions at play in TGF generation can have strong geographical and climatological modulation. Based on the assumption that the observed range of TGF/flash ratio holds at all latitudes we can estimate a global rate of ≃ 220 ÷ 570 TGFs per day. The observed TGF/flash geographical modulation as well as the TGF global rate estimate are in agreement with previous observations

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    The AGILE Mission

    Get PDF
    AGILE is an Italian Space Agency mission dedicated to observing the gamma-ray Universe. The AGILE's very innovative instrumentation for the first time combines a gamma-ray imager (sensitive in the energy range 30 MeV-50 GeV), a hard X-ray imager (sensitive in the range 18-60 keV), a calorimeter (sensitive in the range 350 keV-100 MeV), and an anticoincidence system. AGILE was successfully launched on 2007 April 23 from the Indian base of Sriharikota and was inserted in an equatorial orbit with very low particle background. Aims. AGILE provides crucial data for the study of active galactic nuclei, gamma-ray bursts, pulsars, unidentified gamma-ray sources, galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. Methods. An optimal sky angular positioning (reaching 0.1 degrees in gamma- rays and 1-2 arcmin in hard X-rays) and very large fields of view (2.5 sr and 1 sr, respectively) are obtained by the use of Silicon detectors integrated in a very compact instrument. Results. AGILE surveyed the gamma- ray sky and detected many Galactic and extragalactic sources during the first months of observations. Particular emphasis is given to multifrequency observation programs of extragalactic and galactic objects. Conclusions. AGILE is a successful high-energy gamma-ray mission that reached its nominal scientific performance. The AGILE Cycle-1 pointing program started on 2007 December 1, and is open to the international community through a Guest Observer Program

    Altered adipocyte differentiation and unbalanced autophagy in type 2 Familial Partial Lipodystrophy: an in vitro and in vivo study of adipose tissue browning

    Get PDF
    Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1. Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy, formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage, adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease.We thank FPLD2 patients for donating biological samples. We thank the Italian Network for Laminopathies and the European Consortium of Lipodystrophies (ECLip) for support and helpful discussion. We thank Aurelio Valmori for the technical support. The studies were supported by Rizzoli Orthopedic Institute “5 per mille” 2014 project to MC, AIProSaB project 2016 and Fondazione Del Monte di Bologna e Ravenna grant 2015–2016 “New pharmacological approaches in bone laminopathies based on the use of antibodies neutralizing TGF beta 2” to GL. GL is also supported by PRIN MIUR project 2015FBNB5Y.S

    An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts

    Get PDF
    Fast radio bursts (FRBs) are millisecond radio pulses originating from powerful enigmatic sources at extragalactic distances. Neutron stars with large magnetic fields (magnetars) have been considered as the sources powering the FRBs, but the connection requires further substantiation. Here we report the detection by the AGILE satellite on 28 April 2020 of an X-ray burst in temporal coincidence with a bright FRB-like radio burst from the Galactic magnetar SGR 1935+2154. The burst observed in the hard X-ray band (18-60 keV) lasted about 0.5 s, it is spectrally cut off above 80 keV and implies an isotropically emitted energy of about 1040 erg. This event demonstrates that a magnetar can produce X-ray bursts in coincidence with FRB-like radio bursts. It also suggests that FRBs associated with magnetars can emit X-ray bursts. We discuss SGR 1935+2154 in the context of FRBs with low-intermediate radio energies in the range 1038-1040 erg. Magnetars with magnetic fields B ≈ 1015 G may power these FRBs, and new data on the search for X-ray emission from FRBs are presented. We constrain the bursting X-ray energy of the nearby FRB 180916 to be less than 1046 erg, smaller than that observed in giant flares from Galactic magnetars

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
    corecore