1,016 research outputs found

    Probing three-dimensional surfaces force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

    Get PDF
    Cataloged from PDF version of article.Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation. In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface

    Exploring atomic-scale lateral forces in the attractive regime: a case study on graphite (0001)

    Get PDF
    Cataloged from PDF version of article.A non-contact atomic force microscopy-based method has been used to map the static lateral forces exerted on an atomically sharp Pt/Ir probe tip by a graphite surface. With measurements carried out at low temperatures and in the attractive regime, where the atomic sharpness of the tip can be maintained over extended time periods, the method allows the quantification and directional analysis of lateral forces with piconewton and picometer resolution as a function of both the in-plane tip position and the vertical tip-sample distance, without limitations due to a finite contact area or to stick-slip-related sudden jumps of tip apex atoms. After reviewing the measurement principle, the data obtained in this case study are utilized to illustrate the unique insight that the method offers. In particular, the local lateral forces that are expected to determine frictional resistance in the attractive regime are found to depend linearly on the normal force for small tip-sample distances

    Understanding Scanning Tunneling Microscopy Contrast Mechanisms on Metal Oxides: A Case Study

    Get PDF
    Cataloged from PDF version of article.A comprehensive analysis of contrast formation mechanisms in scanning tunneling microscopy (STM) experiments on a metal oxide surface is presented with the oxygen-induced (2√2 √2)R45 missing row reconstruction of the Cu(100) surface as a model system. Density functional theory and electronic transport calculations were combined to simulate the STM imaging behavior of pure and oxygen-contaminated metal tips with structurally and chemically different apexes while systematically varying bias voltage and tip sample distance. The resulting multiparameter database of computed images was used to conduct an extensive comparison with experimental data. Excellent agreement was attained for a large number of cases, suggesting that the assumed model tips reproduce most of the commonly encountered contrast-determining effects. Specifically, we find that depending on the bias voltage polarity, copper-terminated tips allow selective imaging of two structurally distinct surface Cu sites, while oxygenterminated tips show complex contrasts with pronounced asymmetry and tip sample distance dependence. Considering the structural and chemical stability of the tips reveals that the copper-terminated apexes tend to react with surface oxygen at small tip sample distances. In contrast, oxygenterminated tips are considerably more stable, allowing exclusive surface oxygen imaging at small tip sample distances. Our results provide a conclusive understanding of fundamental STM imaging mechanisms, thereby providing guidelines for experimentalists to achieve chemically selective imaging by properly selecting imaging parameters

    CPMS-improving patient care in Europe via virtual case discussions

    Get PDF
    Purpose The core task of European Reference Networks (ERNs) is to reduce health care inequalities throughout Europe for all patients with rare and complex conditions. A secure web-based application for virtual consultations, the Clinical Patient Management System (CPMS), was developed by the EU to provide expert specialized care for all these patients. This review analyses the opportunities and difficulties that the implementation of this virtual network implies for physicians as well as for the patients. Methods European Reference Network on Rare Endocrine Conditions (Endo-ERN) installed an Operational Helpdesk (OH) to support their members in using CPMS. The OH initiated several actions to facilitate and increase the usage of CPMS. Satisfaction with the system and reasons for low participation rates in virtual case discussions were analyzed by different surveys. Results The number of CPMS users increased constantly, but the active usage of the system remains insufficient. Main reasons were technical difficulties, lack of time and insufficient awareness about CPMS in experts and patients throughout Europe. Still, outcomes of the virtual discussions are considered useful by involved experts and the discussions have provided topics for educational webinars and research. Conclusions CPMS is a secure system with many advantages compared to previous ways of consulting experts but also difficulties that need to be overcome with future strategies. By facilitating its use and increasing awareness among all relevant European experts and patients, CPMS can help to make the existing expertise available for all patients with rare (endocrine) conditions throughout Europe as it was intended.Diabetes mellitus: pathophysiological changes and therap

    Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements

    Get PDF
    Cataloged from PDF version of article.The influence of defects on the local structural, electronic, and chemical properties of a surface oxide on Cu(100) were investigated using atomic resolution three-dimensional force mapping combined with tunneling current measurements and ab initio density functional theory. Results reveal that the maximum attractive force between tip and sample occurs above the oxygen atoms; theory indicates that the tip, in this case, terminates in a Cu atom. Meanwhile, simultaneously acquired tunneling current images emphasize the positions of Cu atoms, thereby, providing species-selective contrast in the two complementary data channels. One immediate outcome is that defects due to the displacement of surface copper are exposed in the current maps, even though force maps only reflect a well-ordered oxygen sublattice. The exact nature of the defects is confirmed by the simulations, which also reveal that the arrangement of the oxygen atoms is not disrupted by the copper displacement. In addition, the experimental force maps uncover a position-dependent modulation of the attractive forces between the surface oxygen and the copper-terminated tips, which is found to reflect the surface's inhomogeneous chemical and structural environment. As a consequence, the demonstrated method has the potential to directly probe how defects affect surface chemical interactions. DOI: 10.1103/PhysRevB.87.15541

    TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider

    Full text link
    The TESLA Technical Design Report Part III: Physics at an e+e- Linear ColliderComment: 192 pages, 131 figures. Some figures have reduced quality. Full quality figures can be obtained from http://tesla.desy.de/tdr. Editors - R.-D. Heuer, D.J. Miller, F. Richard, P.M. Zerwa

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ό\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΌΌ\mu\mu or eΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction
    • 

    corecore