152 research outputs found

    Influence of pterygium size on corneal higher-order aberration evaluated using anterior-segment optical coherence tomography

    Get PDF
    BackgroundThe prospective observation study aimed to evaluate changes in corneal higher-order aberrations induced by advancement of pterygium using an anterior-segment optical coherence tomography (AS-OCT) and Zernike aberration analysis.MethodsThe corneal topography of 284 eyes with primary pterygia originating from the nasal region was measured using an AS-OCT (SS-1000, Tomey). With anterior corneal elevation data, Zernike polynomial coefficients were calculated in diameters of 1.0, 3.0, and 5.0 mm, and the coma, spherical, coma-like, spherical-like, and total higher-order aberrations were obtained. Pterygium size was also measured as a ratio of positions of the pterygium end with respect to the corneal diameter and categorized in eight classes: less than 15%, 15–20%, 20–25%, 25–30%, 30–35%, 35–40%, 40–45, and 45% or larger. Increases in the aberrations were analyzed with reference to those in eyes with pterygium size < 15%.ResultsThe mean age of the participants was 69.3 years, and the pterygium size ranged from 2 to 57% (mean: 28.8%). The coma aberration significantly increased when the pterygium size was 45% or larger in 1.0 and 3.0 mm diameters and over 25–30% in 5.0 mm diameter. Similar increases were found in the pterygium sizes exceeding 45, 40, and 25%, respectively, in the coma-like, spherical-like, and total higher-order aberrations. On contrast, there was no increase in the spherical aberration.ConclusionIncreases in higher-order aberrations reflected the pterygium size, and significant aberrations were induced in 5.0 mm diameter when the end exceeded 25% of corneal diameter. The use of AS-OCT and Zernike analysis could enable objective grading of pterygium advancement based on changes in corneal optics

    Prolonged Radiation Damage in Rat Colon and Urokinase Expression in Epithelium

    Get PDF
    Although radiation therapy plays important role in the treatment of gynecological tumors, it may cause radiation injury as a late effect. Several recent reports show that urokinase such as urokinase type plasminogen activator (uPA) contributes to the repair of ulcerative lesions of the colon epithelium. We studied radiation induced enterocolitis using rat animal models. Seventy-two female Wistar rats were irradiated by a single fraction dose of 36Gy at laparotomy. Histological changes and activity of urokinase system were investigated after irradiation. Ulcers were observed in irradiated field in 12 of 19 animals (63%) even at 60th week after irradiation. Urokinase expressions were observed in the margins of active ulcer. Urokinase was thought to play important role in exacerbation of ulcer formation. Expression of uPA was also observed in submucosal glands. Ischaemic changes were not observed in irradiated colon despite sclerosing vasculitis. It is suggested that uPA played reciprocal roles in radiation induced enterocolitis: healing and aggravation of ulcer

    Localized ground glass opacities with multiple pulmonary small cysts in adult T-cell leukemia or lymphoma: an "alloy wheel" appearance.

    Get PDF
    We herein report a case of adult T-cell leukemia or lymphoma showing multiple lung cysts within a localized ground glass opacity (GGO) on computed tomography scan. The patterns of multiple localized GGOs having multiple small cysts were varied, including a large air space in the center of the localized GGO with surrounding small cysts, a solid part in the center of the localized GGO with peripheral small cysts, and clustered small cysts. These findings were considered to simulate the appearance of an "alloy wheel." Some of the central large air spaces had thickened walls. On the basis of the histopathologic findings, the pathogenesis of multiple cyst formation was considered to be a combination of 2 main mechanisms as follows: a check valve mechanism due to stenosis or an obstruction by the tumor cells\u27 infiltration along the bronchioles, traction bronchiolectasis and ectatic alveoli by fibrosis

    Enzyme replacement therapy with pabinafusp alfa for neuronopathic mucopolysaccharidosis II : an integrated analysis of preclinical and clinical data

    Get PDF
    Enzyme replacement therapy (ERT) improves somatic manifestations in mucopolysaccharidoses (MPS). However, because intravenously administered enzymes cannot cross the blood–brain barrier (BBB), ERT is ineffective against the progressive neurodegeneration and resultant severe central nervous system (CNS) symptoms observed in patients with neuronopathic MPS. Attempts to surmount this problem have been made with intrathecal and intracerebroventricular ERT in order to achieve CNS effects, but the burdens on patients are inimical to long-term administrations. However, since pabinafusp alfa, a human iduronate-2-sulfatase fused with a BBB-crossing anti-transferrin receptor antibody, showed both central and peripheral efficacy in a mouse model, subsequent clinical trials in a total of 62 patients with MPS-II (Hunter syndrome) in Japan and Brazil substantiated this dual efficacy and provided an acceptable safety profile. To date, pabinafusp alfa is the only approved intravenous ERT that is effective against both the somatic and CNS symptoms of patients with MPS-II. This article summarizes the previously obtained preclinical and clinical evidence related to the use of this drug, presents latest data, and discusses the preclinical, translational, and clinical challenges of evaluating, ameliorating, and preventing neurodegeneration in patients with MPS-II

    Impact of GLUT1 and Ki-67 expression on early-stage lung adenocarcinoma diagnosed according to a new international multidisciplinary classification

    Get PDF
    High expression levels of glucose transporter isoform 1 (GLUT1) and Ki-67 are reportedly associated with malignancy-related clinicopathological factors in malignant tumors. Recently, a new histological IASLC/ATS/ERS classification for lung adenocarcinoma was proposed. In this study, we investigated the clinicopathological impact of GLUT1 and Ki-67 expression on early-stage lung adenocarcinoma classified according to the IASLC/ATS/ERS classification. One hundred and five patients with completely resected stage IA lung adenocarcinoma were retrospectively classified into two groups, a 'non-invasive type' (n=31) or an 'invasive type' (n=74), based on the IASLC/ATS/ERS classification. GLUT1 and Ki-67 expression status was evaluated using immunohistochemistry. The epidermal growth factor receptor (EGFR) and KRAS mutation status was determined using PCR-based assays. Positive GLUT1 and Ki-67 expression and EGFR and KRAS mutations were detected in 28 (27%), 33 (31%), 51 (49%) and 5 (8%) cases, respectively. Positive GLUT1 expression was significantly associated with a wild-type EGFR and mutant KRAS status. A multivariate analysis revealed that positive GLUT1 expression was independently associated with the 'invasive type'. In multivariate analyses for overall survival (OS) and disease-free survival (DFS), positive Ki-67 and GLUT1 expression was the only independent factor for a poor OS (P=0.012) and DFS (P=0.040), respectively. In addition, when stratified according to the GLUT1 and Ki-67 status, double-positive cases had the poorest DFS and OS times, compared with the other categories. Positive GLUT1 expression is associated with the invasive character of early-stage lung adenocarcinoma and with early disease relapse. Our results strongly suggest that GLUT1 and Ki-67 play important roles in acquiring biological malignant potential in early-stage lung adenocarcinoma

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore