386 research outputs found
Priming Pharyngeal Motor Cortex by Repeated Paired Associative Stimulation: Implications for Dysphagia Neurorehabilitation
Background. Several stimulation parameters can influence the neurophysiological and behavioral effects of paired associative stimulation (PAS), a neurostimulation paradigm that repeatedly pairs a peripheral electrical with a central cortical (transcranial magnetic stimulation [TMS]) stimulus. This also appears to be the case when PAS is applied to the pharyngeal motor cortex (MI), with some variability in excitatory responses, questioning its translation into a useful therapy for patients with brain injury. Objective. To investigate whether repeated PAS in both “responders” and “nonresponders” could enhance cortical excitability in pharyngeal MI more robustly. Methods. Based on their responses after single PAS, healthy participants were stratified into 2 groups of “responders” and “nonresponders” and underwent 2 periods (60 minutes inter-PAS interval) of active and sham PAS in a randomized order. Neurophysiological measurements with single TMS pulses from pharyngeal motor representation were collected up to 90 minutes after the second PAS period. Results. Repeated PAS increased cortical excitability up to 95% at 60 minutes following the second PAS in both the “responders” and “nonresponders.” Moreover, cortical excitability in the “nonresponders” was significantly different after repeated PAS compared with single and sham application (P = .02; z = −2.2). Conclusions. Double dose PAS switched “nonresponders” to “responders.” These results are important for PAS application to dysphagic stroke patients who do not initially respond to a single application
Dispositional achievement motives matter for autonomous versus controlled motivation and behavioral or affective educational outcomes
Cataloged from PDF version of article.The present study investigated whether autonomous and controlled situational achievement motivation
function as mediating processes through which dispositional achievement motives are manifested in
affective and behavioral outcomes. Structural Equation Modeling with three student samples (Greek
N = 440; Belgian N = 283; German N = 264) indicated that need for achievement related positively to positive
affect and adaptive studying strategies via autonomous motivation. In contrast, fear of failure related
positively to negative affect and negatively to adaptive studying strategies via controlled motivation.
Additionally, dispositional achievement motives were directly related to affect outcomes verifying their
affect-base as argued in achievement motivation theory. The importance of individual differences in
achievement motive dispositions for situational autonomous and controlled motivation is discussed
Circumventing antivector immunity: potential use of nonhuman adenoviral vectors
Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles
Evaluation of the MOCAGE Chemistry Transport Model during the ICARTT/ITOP Experiment
We evaluate the Meteo-France global chemistry transport 3D model MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle) using the important set of aircraft measurements collected during the ICARRT/ITOP experiment. This experiment took place between US and Europe during summer 2004 (July 15-August 15). Four aircraft were involved in this experiment providing a wealth of chemical data in a large area including the North East of US and western Europe. The model outputs are compared to the following species of which concentration is measured by the aircraft: OH, H2O2, CO, NO, NO2, PAN, HNO3, isoprene, ethane, HCHO and O3. Moreover, to complete this evaluation at larger scale, we used also satellite data such as SCIAMACHY NO2 and MOPITT CO. Interestingly, the comprehensive dataset allowed us to evaluate separately the model representation of emissions, transport and chemical processes. Using a daily emission source of biomass burning, we obtain a very good agreement for CO while the evaluation of NO2 points out incertainties resulting from inaccurate ratio of emission factors of NOx/CO. Moreover, the chemical behavior of O3 is satisfactory as discussed in the paper
Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3 -NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx <1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ significantly if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following day’s peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate constants
Multimodel climate and variability of the stratosphere
The stratospheric climate and variability from simulations of sixteen chemistryclimate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar
temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated
for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH
vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere.
Quantitatively, �metrics� indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the Northern Hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs, and jet strength. Models with a stronger QBO have stronger tropical upwelling and a colder NH vortex. Both the qualitative and quantitative analysis indicate a number of common and long�standing model problems, particularly related to the simulation of the SH
and stratospheric variability
Chemistry‐climate model simulations of spring Antarctic ozone
Coupled chemistry‐climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montreal Protocol (with amendments) and Intergovernmental Panel on Climate Change A1b Scenario. The simulations of the Antarctic ozone hole are compared using commonly used diagnostics: the minimum ozone, the maximum area of ozone below 220 DU, and the ozone mass deficit below 220 DU. Despite the fact that the processes responsible for ozone depletion are reasonably well understood, a wide range of results is obtained. Comparisons with observations indicate that one of the reasons for the model underprediction in ozone hole area is the tendency for models to underpredict, by up to 35%, the area of low temperatures responsible for polar stratospheric cloud formation. Models also typically have species gradients that are too weak at the edge of the polar vortex, suggesting that there is too much mixing of air across the vortex edge. Other models show a high bias in total column ozone which restricts the size of the ozone hole (defined by a 220 DU threshold). The results of those models which agree best with observations are examined in more detail. For several models the ozone hole does not disappear this century but a small ozone hole of up to three million square kilometers continues to occur in most springs even after 2070
Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models
The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling
Air quality evaluation of London Paddington train station
Enclosed railway stations hosting diesel trains are at risk of reduced air quality as a result of exhaust emissions that may endanger passengers and workers. Air quality measurements were conducted inside London Paddington Station, a semi-enclosed railway station where 70% of trains are powered by diesel engines. Particulate matter (PM2.5) mass was measured at five station locations. PM size, PM number, oxides of nitrogen (NOx), and sulfur dioxide (SO2) were measured at two station locations. Paddington Station’s hourly mean PM2.5 mass concentrations averaged 16 μg/m3 [min 2, max 68]. Paddington Station’s hourly mean NO2 concentrations averaged 73 ppb [49, 120] and SO2 concentrations averaged 25 ppb [15, 37]. While UK train stations are not required to comply with air quality standards, there were five instances where the hourly mean NO2 concentrations exceeded the EU hourly mean limits (106 ppb) for outdoor air quality. PM2.5, SO2, and NO2 concentrations were compared against Marylebone, a busy London roadside 1.5 km from the station. The comparisons indicated that train station air quality was more polluted than the nearby roadside. PM2.5 for at least one measurement location within Paddington Station was shown to be statistically higher (P-value < 0.05) than Marylebone on 3 out of 4 days. Measured NO2 within Paddington Station was statistically higher than Marylebone on 4 out of 5 days. Measured SO2 within Paddington Station was statistically higher than Marylebone on all 3 days.We thank the Engineering and Physical Sciences Research Council (EP/F034350/1) for funding the Energy Efficient Cities Initiative and the Schiff Foundation for doctoral studentship funding.This is the final version of the article. It first appeared from IOP via http://dx.doi.org/10.1088/1748-9326/10/9/09401
Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects
Monthly averaged surface erythemal solar irradiance (UV-Ery) for local noon from 1960 to 2100 has been derived using radiative transfer calculations and projections of ozone, temperature and cloud change from 14 chemistry climate models (CCM), as part of the CCMVal-2 activity of SPARC. Our calculations show the influence of ozone depletion and recovery on erythemal irradiance. In addition, we investigate UV-Ery changes caused by climate change due to increasing greenhouse gas concentrations. The latter include effects of both stratospheric ozone and cloud changes. The derived estimates provide a global picture of the likely changes in erythemal irradiance during the 21st century. Uncertainties arise from the assumed scenarios, different parameterizations – particularly of cloud effects on UV-Ery – and the spread in the CCM projections. The calculations suggest that relative to 1980, annually mean UV-Ery in the 2090s will be on average 12% lower at high latitudes in both hemispheres, 3% lower at mid latitudes, and marginally higher (1 %) in the tropics. The largest reduction (16 %) is projected for Antarctica in October. Cloud effects are responsible for 2–3% of the reduction in UV-Ery at high latitudes, but they slightly moderate it at mid-latitudes (1 %). The year of return of erythemal irradiance to values of certain milestones (1965 and 1980) depends largely on the return of column ozone to the corresponding levels and is associated with large uncertainties mainly due to the spread of the model projections. The inclusion of cloud effects in the calculations has only a small effect of the return years. At mid and high latitudes, changes in clouds and stratospheric ozone transport by global circulation changes due to greenhouse gases will sustain the erythemal irradiance at levels below those in 1965, despite the removal of ozone depleting substances
- …
