23 research outputs found

    Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Molecular Typing of Acinetobacter baumannii in Comparison with Orthogonal Methods

    Get PDF
    Colonization and subsequent health care-associated infection (HCAI) with Acinetobacter baumannii are a concern for vulnerable patient groups within the hospital setting. Outbreaks involving multidrug-resistant strains are associated with increased patient morbidity and mortality and poorer overall outcomes. Reliable molecular typing methods can help to trace transmission routes and manage outbreaks. In addition to methods deployed by reference laboratories, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) may assist by making initial in-house judgments on strain relatedness. However, limited studies on method reproducibility exist for this application. We applied MALDI-TOF MS typing to A. baumannii isolates associated with a nosocomial outbreak and evaluated different methods for data analysis. In addition, we compared MALDI-TOF MS with whole-genome sequencing (WGS) and Fourier transform infrared spectroscopy (FTIR) as orthogonal methods to further explore their resolution for bacterial strain typing. A related subgroup of isolates consistently clustered separately from the main outbreak group by all investigated methods. This finding, combined with epidemiological data from the outbreak, indicates that these methods identified a separate transmission event unrelated to the main outbreak. However, the MALDI-TOF MS upstream approach introduced measurement variability impacting method reproducibility and limiting its reliability as a standalone typing method. Availability of in-house typing methods with well-characterized sources of measurement uncertainty could assist with rapid and dependable confirmation (or denial) of suspected transmission events. This work highlights some of the steps to be improved before such tools can be fully integrated into routine diagnostic service workflows for strain typing. IMPORTANCE Managing the transmission of antimicrobial resistance necessitates reliable methods for tracking outbreaks. We compared the performance of MALDI-TOF MS with orthogonal approaches for strain typing, including WGS and FTIR, for Acinetobacter baumannii isolates correlated with a health care-associated infection (HCAI) event. Combined with epidemiological data, all methods investigated identified a group of isolates that were temporally and spatially linked to the outbreak, yet potentially attributed to a separate transmission event. This may have implications for guiding infection control strategies during an outbreak. However, the technical reproducibility of MALDI-TOF MS needs to be improved for it to be employed as a standalone typing method, as different stages of the experimental workflow introduced bias influencing interpretation of biomarker peak data. Availability of in-house methods for strain typing of bacteria could improve infection control practices following increased reports of outbreaks of antimicrobial-resistant organisms during the COVID-19 pandemic, related to sessional usage of personal protective equipment (PPE)

    Detection of early changes in the post-radiosurgery vestibular schwannoma microenvironment using multinuclear MRI

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-03-01, accepted 2021-07-05, registration 2021-07-21, pub-electronic 2021-08-03, online 2021-08-03, collection 2021-12Publication status: PublishedFunder: CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester; doi: http://dx.doi.org/10.13039/501100014679; Grant(s): C8742/A18097, C8742/A18097, C8742/A18097, C8742/A18097, C8742/A18097Funder: Manchester Academic Health Sciences centre (MAHSC)Abstract: Stereotactic radiosurgery (SRS) is an established, effective therapy against vestibular schwannoma (VS). The mechanisms of tumour response are, however, unknown and in this study we sought to evaluate changes in the irradiated VS tumour microenvironment through a multinuclear MRI approach. Five patients with growing sporadic VS underwent a multi-timepoint comprehensive MRI protocol, which included diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE) MRI and a spiral 23Na-MRI acquisition for total sodium concentration (TSC) quantification. Post-treatment voxelwise changes in TSC, DTI metrics and DCE-MRI derived microvascular biomarkers (Ktrans, ve and vp) were evaluated and compared against pre-treatment values. Changes in tumour TSC and microvascular parameters were observable as early as 2 weeks post-treatment, preceding changes in structural imaging. At 6 months post-treatment there were significant voxelwise increases in tumour TSC (p < 0.001) and mean diffusivity (p < 0.001, repeated-measures ANOVA) with marked decreases in tumour microvascular parameters (p < 0.001, repeated-measures ANOVA). This study presents the first in vivo evaluation of alterations in the VS tumour microenvironment following SRS, demonstrating that changes in tumour sodium homeostasis and microvascular parameters can be imaged as early as 2 weeks following treatment. Future studies should seek to investigate these clinically relevant MRI metrics as early biomarkers of SRS response

    First-in-human technique translation of oxygen-enhanced MRI to an MR Linac system in patients with head and neck cancer

    Get PDF
    BACKGROUND AND PURPOSE: Tumour hypoxia is prognostic in head and neck cancer (HNC), associated with poor loco-regional control, poor survival and treatment resistance. The advent of hybrid MRI - radiotherapy linear accelerator or 'MR Linac' systems - could permit imaging for treatment adaptation based on hypoxic status. We sought to develop oxygen-enhanced MRI (OE-MRI) in HNC and translate the technique onto an MR Linac system. MATERIALS AND METHODS: MRI sequences were developed in phantoms and 15 healthy participants. Next, 14 HNC patients (with 21 primary or local nodal tumours) were evaluated. Baseline tissue longitudinal relaxation time (T1) was measured alongside the change in 1/T1 (termed ΔR1) between air and oxygen gas breathing phases. We compared results from 1.5 T diagnostic MR and MR Linac systems. RESULTS: Baseline T1 had excellent repeatability in phantoms, healthy participants and patients on both systems. Cohort nasal concha oxygen-induced ΔR1 significantly increased (p < 0.0001) in healthy participants demonstrating OE-MRI feasibility. ΔR1 repeatability coefficients (RC) were 0.023-0.040 s-1 across both MR systems. The tumour ΔR1 RC was 0.013 s-1 and the within-subject coefficient of variation (wCV) was 25% on the diagnostic MR. Tumour ΔR1 RC was 0.020 s-1 and wCV was 33% on the MR Linac. ΔR1 magnitude and time-course trends were similar on both systems. CONCLUSION: We demonstrate first-in-human translation of volumetric, dynamic OE-MRI onto an MR Linac system, yielding repeatable hypoxia biomarkers. Data were equivalent on the diagnostic MR and MR Linac systems. OE-MRI has potential to guide future clinical trials of biology guided adaptive radiotherapy

    \u27Links2HealthierBubs\u27 cohort study: Protocol for a record linkage study on the safety, uptake and effectiveness of influenza and pertussis vaccines among pregnant Australian women

    Get PDF
    Introduction: Pregnant women and infants are at risk of severe influenza and pertussis infection. Inactivated influenza vaccine (IIV) and diphtheria-tetanus-acellular pertussis vaccine (dTpa) are recommended during pregnancy to protect both mothers and infants. In Australia, uptake is not routinely monitored but coverage appears sub-optimal. Evidence on the safety of combined antenatal IIV and dTpa is fragmented or deficient, and there remain knowledge gaps of population-level vaccine effectiveness. We aim to establish a large, population-based, multi-jurisdictional cohort of mother-infant pairs to measure the uptake, safety and effectiveness of antenatal IIV and dTpa vaccines in three Australian jurisdictions. This is a first step toward assessing the impact of antenatal vaccination programmes in Australia, which can then inform government policy with respect to future strategies in national vaccination programmes. Methods and analysis: ‘Links2HealthierBubs’ is an observational, population-based, retrospective cohort study established through probabilistic record linkage of administrative health data. The cohort includes births between 2012 and 2017 (~607 605 mother-infant pairs) in jurisdictions with population-level antenatal vaccination and health outcome data (Western Australia, Queensland and the Northern Territory). Perinatal data will be the reference frame to identify the cohort. Jurisdictional vaccination registers will identify antenatal vaccination status and the gestational timing of vaccination. Information on maternal, fetal and child health outcomes will be obtained from hospitalisation and emergency department records, notifiable diseases databases, developmental anomalies databases, birth and mortality registers. Ethics and dissemination: Ethical approval was obtained from the Western Australian Department of Health, Curtin University, the Menzies School of Health Research, the Royal Brisbane and Women’s Hospital, and the West Australian Aboriginal Health Ethics Committees. Research findings will be disseminated in peer-reviewed journals, at scientific meetings, and may be incorporated into communication materials for public health agencies and the public

    Symptom-based stratification of patients with primary Sjögren's syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials

    Get PDF
    Background Heterogeneity is a major obstacle to developing effective treatments for patients with primary Sjögren's syndrome. We aimed to develop a robust method for stratification, exploiting heterogeneity in patient-reported symptoms, and to relate these differences to pathobiology and therapeutic response. Methods We did hierarchical cluster analysis using five common symptoms associated with primary Sjögren's syndrome (pain, fatigue, dryness, anxiety, and depression), followed by multinomial logistic regression to identify subgroups in the UK Primary Sjögren's Syndrome Registry (UKPSSR). We assessed clinical and biological differences between these subgroups, including transcriptional differences in peripheral blood. Patients from two independent validation cohorts in Norway and France were used to confirm patient stratification. Data from two phase 3 clinical trials were similarly stratified to assess the differences between subgroups in treatment response to hydroxychloroquine and rituximab. Findings In the UKPSSR cohort (n=608), we identified four subgroups: Low symptom burden (LSB), high symptom burden (HSB), dryness dominant with fatigue (DDF), and pain dominant with fatigue (PDF). Significant differences in peripheral blood lymphocyte counts, anti-SSA and anti-SSB antibody positivity, as well as serum IgG, κ-free light chain, β2-microglobulin, and CXCL13 concentrations were observed between these subgroups, along with differentially expressed transcriptomic modules in peripheral blood. Similar findings were observed in the independent validation cohorts (n=396). Reanalysis of trial data stratifying patients into these subgroups suggested a treatment effect with hydroxychloroquine in the HSB subgroup and with rituximab in the DDF subgroup compared with placebo. Interpretation Stratification on the basis of patient-reported symptoms of patients with primary Sjögren's syndrome revealed distinct pathobiological endotypes with distinct responses to immunomodulatory treatments. Our data have important implications for clinical management, trial design, and therapeutic development. Similar stratification approaches might be useful for patients with other chronic immune-mediated diseases. Funding UK Medical Research Council, British Sjogren's Syndrome Association, French Ministry of Health, Arthritis Research UK, Foundation for Research in Rheumatology

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe
    corecore