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Abstract

Purpose: MRI biomarkers of tumour response to treatment are typically obtained from parameters

derived from a model applied to pre- and post-treatment data. However, as tumours are spatially

and temporally heterogeneous, different models may be necessary in different tumour regions, and

model suitability may change over time. This work evaluates how the suitability of two diffusion-

weighted (DW) MRI models varies spatially within tumours at the voxel level and in response to

radiotherapy, potentially allowing inference of qualitatively different tumour microenvironments.

Methods: DW-MRI data were acquired in CT26 subcutaneous allografts before and after radiother-

apy. Restricted and time-independent diffusion models were compared, with regions well-described

by the former hypothesised to reflect cellular tissue, and those well-described by the latter expected

to reflect necrosis or oedema. Technical and biological validation of the percentage of tissue de-

scribed by the restricted diffusion microstructural model (termed %MM) was performed through

simulations and histological comparison.

Results: Spatial and radiotherapy-related variation in model suitability was observed. %MM de-

creased from a mean of 64% at baseline to 44% 6 days post-radiotherapy in the treated group.

%MM correlated negatively with the percentage of necrosis from histology, but overestimated it

due to noise. Within MM regions, microstructural parameters were sensitive to radiotherapy-

induced changes.

Conclusion: There is spatial and radiotherapy-related variation in different models’ suitability for

describing diffusion in tumour tissue, suggesting the presence of different and changing tumour sub-

regions. The biological and technical validation of the proposed %MM cancer imaging biomarker

suggests it correlates with, but overestimates, the percentage of necrosis.
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Introduction

Quantitative MR biomarkers can provide a non-invasive assessment of tumour response to treat-

ment, potentially serving as useful tools in the development of novel therapies, or enabling tracking

of patient response and guiding clinical decisions regarding therapy options (1, 2). In order to fulfil

this potential and become robust tools in research or clinical settings, biomarkers require both

technical validation, for example evaluating their accuracy and precision, and biological validation,

to understand their relationship to biological processes (2).

An important consideration in assessing biomarker accuracy and precision is the validity of the

model from which the biomarker is obtained. Typically, MRI biomarkers of tumour response to

treatment are obtained by calculating changes in summary statistics of parameters derived from a

model that is applied to pre- and post-treatment data. However, tissue within tumours is known to

be heterogeneous (3, 4), with this intra-tumour heterogeneity potentially varying over the course

of treatment. Single summary statistics, such as parameter means or medians, do not capture

such heterogeneity, and, moreover, do not provide information about the suitability of the applied

model. For example, different models may be necessary in different regions, and model suitability

may change over time, confounding the interpretation of biomarkers obtained from a single model

applied to all tumour voxels at all time points. Understanding the applicability of different models

may provide information about qualitative differences in the structure or function of tumour sub-

regions, and may enhance the utility of model parameters themselves, for example by allowing

the rejection of values in regions where the model is not appropriate. Such analyses also have the

potential to yield new biomarkers based on the classification of tissue according to model suitability.

Model comparison techniques have been applied to a number of models used to obtain biomark-

ers from quantitative MRI data. For example, model selection in dynamic contrast-enhanced MRI

(5) has been used to evaluate the suitability of different models for describing average whole-tumour

signal time courses in cervical tumours (6), and voxel-wise model comparison has shown that dif-

ferent models tend to be favoured in liver metastases compared with surrounding liver (7). In

diffusion-weighted (DW) MRI, a technique which has seen extensive use in evaluating treatment

response (8, 9), model comparison has shown that non-monoexponential representations (intra-

voxel incoherent motion (IVIM), the stretched exponential, and the statistical model) tend to be

preferred over the monoexponential apparent diffusion coefficient (ADC) before and after androgen

deprivation therapy in patients with bone metastases from prostate cancer (10). Model comparison

has also been used to show that a microstructural model comprising restricted intracellular dif-

fusion, hindered extracellular diffusion and intravascular pseudo-diffusion describes whole-tumour

DW-MRI data better than ADC or IVIM, in two untreated models of colorectal cancer (11). Re-

cently, a comparison between a microstructural model and ADC has been used to distinguish viable

tissue in gliomas from necrotic or oedematous regions, and from surrounding brain tissue (12).

This work evaluates how the relative suitability of two DW-MRI models varies spatially within

tumours at the voxel level and in response to radiotherapy, potentially allowing inference of quali-

tatively different tumour microenvironments. Models of restricted and time-independent diffusion
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were compared, with regions well-described by the former hypothesised to reflect cellular tissue,

and those well-described by the latter expected to reflect necrotic, cystic, or oedematous regions.

Biological and technical validation of this methodology was performed using in vivo experiments

and simulations (13).

Methods

Mice and cell lines

Animal experiments were approved by a local ethics committee and performed under a United

Kingdom Home Office license, in compliance with UK National Cancer Research Institute guidelines

for the welfare of animals in cancer research (14), and with the ARRIVE (Animals in Research:

Reporting In Vivo Experiments) guidelines (15). All experiments were performed with a syngeneic

mouse model, where CT26 murine colon carcinoma cells were implanted in an immunocompetent

BALB/c mouse host. Mice were obtained from Harlan (Bicester, UK), and were housed under

specific pathogen-free conditions in individually ventilated cages holding a maximum of 6 animals,

with appropriate bedding, nesting material and a cardboard tunnel. Mice were housed on a 12

h/12 h light/dark cycle and were given filtered water and fed an appropriate rodent diet. CT26

cells (ATCC) were maintained in Dulbecco modified eagle medium (DMEM), supplemented with

10% fetal calf serum (FCS) and 1% L-glutamine (Invitrogen), and cultured to limited passage for

1 to 2 weeks prior to implantation, with regular re-screening for mycoplasma contamination. Mice

were inoculated subcutaneously in the supraspinal position with 1 × 106 CT26 cells in 100 µL of

phosphate-buffered saline, and were treated when tumours were 250− 300 mm3, as measured with

callipers.

Tumour radiotherapy and MR scan schedule

Mice received either sham therapy (control group, C; n = 10), or a single dose of 10 Gy delivered

bilaterally (radiotherapy group, RT; n = 9). While formal sample size calculations were not

performed, these group sizes are similar to those used previously to detect significant cohort-level

changes in ADC (16). MR scanning was performed ∼ 2− 4 hours before sham/treatment (day 0)

and at up to three post-treatment time points (days 3, 6, and 10). Specifically, three animals (2

C, 1 RT) were scanned at days 0 and 3, seven (4 C, 3 RT) at days 0, 3 and 6, and nine (4 C, 5

RT) at days 0, 3, 6 and 10. These time points were chosen based on previous observations of CT26

tumour growth inhibition and size reductions in response to 10 Gy radiotherapy (17). Animals were

randomised to control and treatment groups following the day 0 scan. The timing of control and

treated scans was not formally randomised, but animals from both groups had scans distributed

throughout the morning and early afternoon.
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Histology

Animals were euthanised immediately after their last scan, allowing tumours at a range of time

points to be harvested for histological analysis. Tumours were excised whole and bisected along the

imaging plane, taking for histology the half of the tumour which was closest to the body. These

halves were then fixed in 4% neutral buffered formalin for 24 hours, transferred to 70% ethanol,

processed and then embedded in paraffin. Sections 5 µm thick were cut, floated out on a water

bath, collected on charged slides and then dried at 37◦C overnight. Sections were stained with

hematoxylin and eosin (H&E) to allow identification of viable and necrotic tumour, and whole-

field images were obtained using a SCN 400 Leica scanner at 40× magnification. Tumours were

segmented semi-automatically into viable and necrotic tissue, and the percentage area of necrosis,

%necrosis, was calculated on a single H&E slice for each tumour; this single slice came from the cut

face of the tumour half, which approximately corresponds to the tumour centre. Pathology image

analysis was performed using the Composer module in Tissue Studio Portal version 4.4, Definiens

Developer XD version 2.7 (Definiens AG, Munich, Germany).

MR protocol

All scans were performed on a 7 T horizontal bore magnet (Magnex Scientific Ltd., Abingdon, UK)

interfaced to a Bruker Avance III console running ParaVision 6.0.1 (Bruker BioSpin, Ettlingen,

Germany). All data were acquired using a transmit-only volume coil for excitation, with a receive-

only surface coil placed over the tumour, with animals in the prone position. Anaesthesia was

induced, and was maintained throughout scanning using 2% isoflurane in oxygen, delivered at 2

L/min; respiratory rate and core body temperature were monitored, with temperature maintained

at 37◦C using warm air.

A T2-weighted rapid acquisition with relaxation enhancement (RARE) sequence was performed

for tumour localisation, and for subsequent region of interest (ROI) definition; effective TE = 33

ms, TR = 2500 ms, matrix = 256 × 256. For conventional ADC mapping, pulsed gradient spin

echo (PGSE) data were acquired with δ = 4.65 ms, ∆ = 9.86 ms, G = 113, 207, 293 mT/m,

b = 150, 500, 1000 s/mm2, TE = 20.4 ms, TR = 2550 ms, matrix = 128 × 128; this is referred

to as the single diffusion time data set. For microstructural modelling and model comparison,

PGSE data were acquired with δ = 4.65 ms, ∆ = 9.86, 40.0 ms, G = 0, 113, 207, 293 mT/m,

b = 0, 150, 500, 1000, 0, 689, 2296, 4592 s/mm2, TE = 50.1 ms, TR = 2550 ms, matrix = 64×64; this

is referred to as the two diffusion time data set. Note that gradient duration, gradient strength, TE,

and TR were the same for both diffusion times in the two diffusion time data set. The gradient rise

time was 0.245 ms for all PGSE scans, and imaging volumes were identical for all scans, providing

full tumour coverage with field of view = 32 mm × 32 mm, slice thickness = 0.6 mm, and 20

coronal slices.
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MR analysis

For conventional ADC mapping using the single diffusion time data set, voxel-wise signals, S, were

normalised to the b = 150 s/mm2 signal to minimise the potential influence of capillary blood

flow, and fitted to S/Sb150 = exp(−bADC). For microstructural modelling and model comparison,

two models were separately fitted to the two diffusion time data set. First, a two-compartment

microstructural model (MM) of diffusion restricted within impermeable spheres and hindered in

the extracellular space (18) was fitted to signals normalised to G = 0 mT/m, estimating cell radius,

R, intra- and extra-cellular diffusivities, Di and De, and intracellular signal fraction, fi. Second, a

monoexponential decay with b-value was fitted to the same data, yielding a single diffusivity, here

referred to as D′. As data from two diffusion times were included in this fit, the monoexponential

decay in this case is only appropriate where diffusion is time-independent, with the signal depending

only on b-value; this is referred to as the time-independent diffusion (TID) model. Note that this

differs from the conventional ADC mapping described above, which only uses a single diffusion time.

Potential noise bias was mitigated by discarding signals lower than 2Snoise, where Snoise is the mean

signal in a noise ROI (19), and each voxel-wise fit was performed for 100 starting values, with

the final parameter estimates taken as those resulting in the lowest value of the objective function.

Diffusion gradient rise times were included in all models (20), and parameters were constrained to be

within plausible limits: 0.1 ≤ R ≤ 25 µm, 0.1 ≤ ADC, Di, De, D
′ ≤ 3 µm2/ms, 0.01 ≤ fi ≤ 1. All

analyses were carried out in MATLAB 2017a (The MathWorks, Inc., Natick, MA, USA), with least

squares fitting performed using a Nelder-Mead simplex algorithm (fminsearchbnd in MATLAB).

In addition to the method of fitting the MM described above, a second approach was investigated

as a means of improving fit stability. As a compromise between the direct fitting of Di described

above, and the approach taken elsewhere of fixing diffusivities to single a priori values (11, 21),

fitting was repeated effectively using a look-up table for Di. Specifically, in separate fits Di was

fixed to five different values, Di = 0.5, 1.0, 1.5, 2.0, 2.5 µm2/ms; these five fits were then compared,

with voxel-wise parameter values taken from the fit with the highest R2 (see Supporting Information

Figure S1). This resulted inDi maps which were discretised (voxels were one of five possible values),

while R, fi, and De were continuous; all four parameters could vary spatially. The original method

and this second approach are referred to as fit-Di and discrete-Di, respectively.

Both approaches were investigated in simulations (see Fitting simulations section below), with

MM fits for fit-Di and discrete-Di compared to evaluate the effects on fit stability of fixing Di. This

evaluation considered the extent to which fits returned parameters with extreme values, taken as

at least one parameter being within 1% of the fit constraints. On the basis of this evaluation, the

preferred approach (fit-Di or discrete-Di) was chosen for subsequent analysis.

MM fits from the chosen approach were then compared with TID fits on a voxel-wise basis

using the corrected Akaike Information Criterion (AICc), taking the fit with the lower AICc as

the preferred model in a given voxel (Figure 1). In AICc calculations, the MM model had four

fitted parameters, while TID had one. Within whole-tumour ROIs, the percentage of voxels with

AICcMM < AICcTID was calculated to assess the proportion of tumour tissue in which MM was
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preferred; this is referred to as %MM. To test the hypothesis that regions well-described by

MM reflect cellular tissue while those well-described by TID reflect non-viable tissue, %MM from

subjects’ final scan was compared with %necrosis obtained from histology (see Histology section

above). Only %MM data from the central slice of the tumour was used for this correlation, as this

corresponded approximately to the region used for histology (see Histology section above). The

link between conventional ADC and histology was also investigated, again only using data from the

central slice of the tumour, firstly by comparing median ADC with %necrosis, and secondly by using

an ADC threshold to classify necrotic and non-necrotic voxels. Here, a range of ADC thresholds

were applied to central-slice ADC datasets from subjects’ final scan, in each case calculating the

percentage of voxels with ADC below the given threshold, potentially providing a metric analogous

to %MM. For each threshold, this metric was compared with %necrosis, to determine an ADCcut−off

which yields the strongest correlation. All MR image analysis and histology image analysis were

performed independently, with each analysis blinded to the results of the other.

MM parameter distributions were then obtained from voxels where MM was preferred, after ex-

cluding fits with extreme values (where at least one parameter was within 1% of the fit constraints).

Distributions of conventional ADC measurements were obtained from all voxels in a ROI.

***Figure 1 appears near here***

Statistical analysis

Median values from distributions for ADC, R, De, and fi, along with values for %MM, were

analysed in a mixed-effects model, with scan day as a fixed effect, and subject as a random effect.

Parameters were modelled as a quadratic function of scan day, to capture the non-linear trends

observed for most parameters. Two models, one without and one with a group/time interaction

(with group referring to control or treated animals, and time referring to scan day), were fitted and

compared using a likelihood-ratio test. This procedure was performed for each parameter, with

P < 0.05 in the likelihood-ratio test taken to indicate a statistically significant difference between

groups for a given parameter. Mixed-effects modelling was carried out in R version 3.5.1 (22) using

the nlme package (23).

Fitting simulations

Simulations were used to investigate the discrete-Di approach described above (see MR analysis sec-

tion above). Simulated MM signals were generated for 96 different microstructures (all combinations

of R = 5, 10µm, Di, De = 0.2, 1.1, 2.0, 2.9 µm2/ms, fi = 0.25, 0.50, 0.75), using the experimental

acquisition protocol (see MR protocol section above). One thousand five hundred noisy synthetic

signals were generated for each microstructure, with noise added such that the signals were Rician

distributed with a signal-to-noise ratio (SNR) at b = 0 s/mm2 of 54, matching the mean SNR in

the experimental data; SNR was calculated by dividing b = 0 s/mm2 signals by the Rician noise

standard deviation, derived from the mean signal in a background ROI (24). MM was then fit to

the signals using the fit-Di and discrete-Di approaches, following the fitting procedure described
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above (see MR analysis section). The accuracy of model parameter estimates was then evaluated,

along with the extent to which the two fitting approaches yielded estimates with extreme values,

taken as at least one parameter being within 1% of the fit constraints.

%MM simulations

Simulations were also performed to evaluate the accuracy and precision of %MM measurements.

DW signals were simulated from MM and TID models using the experimental acquisition protocol,

generating different ‘synthetic tumour datasets’ with ground truth %MM values from 10% to 90%.

For each ground truth, two thousand signals were generated using model parameters sampled at

random from those obtained in the experimental data; these signals were then split into groups of

200, giving 10 datasets for each ground truth. Noiseless and noisy datasets were generated, with

the latter reflecting the SNR properties of the experimental data. All datasets were then analysed

with the same pipeline used for the experimental data, that is, fitting MM and TID models, and

then performing the AICc analysis. %MM bias was evaluated by comparing calculated values for

each dataset with the ground truth, and precision was evaluated by assessing the variability over

individual datasets. As a binary classification underlies the calculation of %MM, standard summary

statistics of accuracy, sensitivity, and specificity were derived from the confusion matrix to evaluate

the technical performance of %MM measurements (25). Analysis code will be made available at

https://gitlab.com/manchester qbi/manchester qbi public/diffusion model comparison.

Results

Fitting simulations

Figure 2A compares the accuracy of model parameter estimates from fit-Di and discrete-Di fits,

for four ground truth Di values. The accuracy metric was taken as the median absolute percentage

difference between each fit result and the ground truth, with the boxplots in each panel representing

the distribution over 24 ground truth microstructures with different R, De, and fi, for the given

ground truth Di; taken together, the plots present results for all 96 microstructures generated.

The discrete-Di fits tend to have slightly narrower distributions, with fewer large errors, except for

Di = 0.2 µm2/ms where discrete-Di would be expected to perform poorly as Di here cannot be

lower than 0.5 µm2/ms (due to the discretisation). Although there is not a dramatic improvement

in accuracy with discrete-Di, it does tend to result in fewer fits with extreme values, as shown in

Figure 2B, where the boxplots show the percentage of accepted fits (that is, where no parameter is

within 1% of the fit constraints), as a distribution over 24 microstructures for four ground truth Di

values. It should be emphasised that there is a wide variation in parameter accuracy and precision,

depending on the ground truth microstructure, and that Di in general tends to be estimated poorly

(see Supporting Information Figure S2). Given the improvement in fit stability suggested by Figure

2B, discrete-Di was used for the in vivo analysis.

***Figure 2 appears near here***
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%MM simulations

Figure 3A plots estimated %MM values (mean ± standard deviation (SD) over datasets) as a

function of the ground truth, for noiseless and noisy cases. The infinite SNR case performs as

expected, with estimated values matching the ground truth. With noisy signals, however, %MM

tends to be underestimated, with the magnitude of the bias increasing with the ground truth value.

The degree of underestimation suggests that, for this SNR, estimated %MM values cannot exceed

∼ 70%, even if the ground truth is higher. Coefficients of variation for %MM are < 10% across the

ground truth values, indicating good precision, and an insensitivity to different model parameters

and noise instances. For the noisy data, Figure 3B plots summary statistics of the classification’s

confusion matrix, showing high specificity (≥ 95%), but lower sensitivity (≥ 60%), with accuracy

dropping from a mean of 96% to 73% as ground truth %MM increases from 10% to 90%.

***Figure 3 appears near here***

Conventional ADC

Figure 4A plots median conventional ADC values for all tumours at all time points, with group-

level trends compared in Figure 4B. Note that these conventional ADC values were obtained from

whole-tumour ROIs, irrespective of MM and TID fits. Significant differences in ADC were observed

between groups (P < 0.0001), with day 0 and day 10 values (mean ± SD) of 0.62 ± 0.08 µm2/ms

and 0.70 ± 0.04 µm2/ms for controls, and 0.62 ± 0.06 µm2/ms and 0.8 ± 0.2 µm2/ms for treated.

Median ADC from subjects’ final scan showed a positive correlation with %necrosis determined

from histology (Pearson’s correlation coefficient, ρ = 0.56, 95% confidence interval (CI) = 0.13 to

0.81, P = 0.016; see Supporting Information Figure S3). An ADCcut−off of 1.07 µm2/ms provided

the strongest negative correlation between the percentage of voxels below that value and %necrosis

(Pearson’s correlation coefficient, ρ = −0.65, 95% CI = −0.86 to −0.26, P = 0.003; see Supporting

Information Figure S4).

***Figure 4 appears near here***

Diffusion model comparison

Model preference relates to histology measurement of necrosis

Both MM-favoured and TID-favoured voxels were observed in all tumours at all time points, with

%MM values ranging from 29% to 76%. At day 0, mean ± SD (over all tumours) was 61 ± 7 %.

Figure 5A plots %MM against percentage necrosis determined from histology. As with the ADC

correlation described above, the %MM values come from subjects’ final scan, that is, the time

point closest to the histological analysis. Using data from control and treated tumours, there is

a significant negative correlation between %MM and %necrosis (Pearson’s correlation coefficient,

ρ = −0.64, 95% CI = −0.85 to −0.24, P = 0.004). Figure 5B shows example H&E images from

control and treated tumours with low and high levels of necrosis, illustrating the staining and

segmentation used to determine %necrosis.
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***Figure 5 appears near here***

Model preference is sensitive to radiotherapy-induced changes

Figure 6 plots %MM as a function of time, showing a significant difference between control and

treated groups (P = 0.0014). %MM decreased from a mean of 64% at baseline to 44% 6 days

post-radiotherapy in the treated group, with three out of five tumours then showing an increase

from day 6 to day 10. These were the same three tumours that showed a decrease in ADC from

day 6 to 10 (Figure 4A). Over the same time period, %MM in the control group decreased from a

mean of 59% to 54%.

***Figure 6 appears near here***

Microstructural parameters exhibit spatial heterogeneity

MM and TID parameter maps generally showed heterogeneity within tumours, with clear contrast

in R, fi, Di and De between regions in which each model was preferred. An example is shown in

Figure 7, where a central region of high D′ favours the TID model. In this region MM returns

high and low R, low Di and fi, and high De. Around the rim, where MM is favoured, D′ is lower

than in the centre, corresponding to lower R and De estimates, and higher fi and Di estimates.

Conventional ADC values are similar to D′ in regions where TID is preferred (comparing bottom

left and top right panels of Figure 7), while ADC is consistently higher than D′ in regions preferred

by MM. This results from the inability of a single diffusivity to describe MM regions, with D′

reflecting an average of high and low diffusivities at short and long diffusion times, respectively,

along with the fact that ADC was measured at the short diffusion time only. Voxel-wise correlations

between D′ and ADC are shown in Supporting Information Figure S5, illustrating the tendency for

ADC to be higher than D′ when both parameters are low, but similar to D′ when both parameters

are high.

***Figure 7 appears near here***

Microstructural parameters are sensitive to radiotherapy-induced changes

Figure 8 plots median MM parameters, from voxels where MM was preferred over TID, as a function

of time. At day 0, mean ± SD values (over all tumours) of median MM parameters were R = 10±1

µm, fi = 0.41± 0.03, and De = 0.6± 0.1 µm2/ms. Comparing parameter medians between groups

showed a non-significant difference in R (P = 0.064), while fi and De were significantly different

(P < 0.0001 and P = 0.0002). There were slight increases in fi in the controls and decreases in

the treated group, while De tended to increase in the treated group.

***Figure 8 appears near here***
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Discussion

Biomarkers derived from DW-MRI, including ADC and parameters from microstructural models,

are being investigated as potential markers of treatment response in oncology (8, 9, 11, 12, 26). ADC

is relatively straightforward to measure and has been shown to have sensitivity to therapy-induced

changes. However, it lacks specificity as it can be influenced by various cellular-level features,

without being able to characterise these features directly. This has motivated the use of more

complex models, which potentially yield more specific biomarkers and may help resolve ambiguities

in conventional ADC measurements (11, 27, 28). For any model-derived biomarker, understanding

the spatial and temporal validity of the model is an important part of biomarker validation. The

present work’s evaluation of model suitability provides two insights into tumour microstructure and

treatment response. First, there is spatial and radiotherapy-related variation in different models’

suitability for describing water diffusion in tumour tissue, potentially reflecting different and chang-

ing microenvironments. Second, within restricted diffusion regions, microstructural parameters are

sensitive to radiotherapy-induced changes, and potentially provide more specific microstructural

information than conventional DW-MRI-derived biomarkers. Finally, the work provides important

information on the technical and biological validity of the proposed %MM biomarker.

The observed increase in conventional ADC in the treated group is consistent with the majority

of preclinical studies investigating ADC in response to single-fraction radiotherapy, with increases

reported in models of fibrosarcoma (29), glioma (12, 30), non-Hodgkin’s lymphoma (31), and

colorectal cancer (16). Such increases have been hypothesised to reflect decreases in cellularity

(29, 30), and have been associated with histologically-observed apoptosis (31). A previous study

investigating the same cell line and mouse strain as that used in the present work reported an

initial decrease in ADC less than one day following 10 Gy radiotherapy given in two fractions

(32); the present work would not capture such a change given its first time point of three days.

However, even at time points up to seven days post-treatment, ADC in treated tumours tended

to be similar to or lower than baseline values (32), in contrast to the increases observed in the

present study. This difference may be due to the exclusion of necrotic regions in the study of

Zhang et al. (32), with the present study including such regions in ADC analyses. If these regions

are excluded, by calculating median ADC values from only those voxels favoured by MM, changes

relative to baseline in the treated group are reduced. For example, when all tumour voxels are

included, group-mean ADC in the treated group increases by 11%, 23% and 26% at days 3, 6 and

10, relative to baseline; when including only MM-favoured voxels, these values drop to 8%, 9%

and 5%, respectively. ADC differences between control and treated groups are also reduced when

including only MM-favoured voxels. For example, when all tumour voxels are included, there is an

18% difference in group-mean ADCs between controls and treated at day 6; when including only

MM-favoured voxels, this drops to 7%. Such effects highlight how the link between ROI definition

and tumour heterogeneity can affect analyses. In the present study, whole-tumour ADC was found

to correlate with %necrosis from histology, while Zhang et al. observed correlations between ADC

in viable regions and apoptotic markers (32), suggesting that ADC measurements are sensitive to
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multiple forms of cell death.

By directly modelling cellular-level features, microstructural models have the potential to pro-

vide a more specific interpretation of changes in the DW-MRI signal. The microstructural modelling

in the present study suggests that radiotherapy results in a decrease in intracellular signal fraction,

and an increase in extracellular diffusivity, implying that these are the underlying microstructural

changes which lead to the observed increase in ADC. Although these microstructural changes can-

not be quantitatively validated with the present data, a decrease in fi is consistent with a loss

of cells due to radiotherapy-induced cell death, and is consistent with DW-MRI measurements in

9L gliomas treated with radiotherapy (12). It should also be noted that the absolute intracellular

signal fractions in the present study (∼ 0.4) were higher than those estimated in gliomas (∼ 0.1

(12)), qualitatively consistent with separate reports of relatively high extracellular spaces in gliomas

(33, 34). However, the values reported in the present study are lower than those reported for other

colorectal cancer models using similar DW-MRI methods (∼ 0.68 − 0.84 (11)). The changes and

heterogeneity in De suggest that it is neither a static nor uniform parameter, as implicitly assumed

when fixing it to a single value in fitting routines. Although further work is needed to understand

its relationship with tumour microstructure, De may itself be a useful biomarker, with the observed

increase suggesting that radiotherapy has an influence on the extracellular space. Single and frac-

tionated radiotherapy doses have previously been shown to affect the extracellular matrix, causing a

reduction in collagen matrix stiffness (35). This reduction in stiffness, however, was not associated

with a change in the collagen architecture, a microstructural property that De may be hypothesised

to have sensitivity to. Validation of De as a biomarker therefore requires further experiments, in

which the extracellular matrix is modulated in a controlled way.

Taking the ADC and model comparison data together, shows consistency between the gradual

ADC increase in the controls and the gradual decrease in %MM, suggesting that tumour growth

due to the lack of treatment is accompanied by necrosis. In non-necrotic regions, there is a trend

for increasing fi and little change in R, consistent with cell density increasing as tumours grow.

The larger ADC increase in the treated group is consistent with the larger %MM decrease, with

the fi and De changes suggesting that radiotherapy affects properties of the non-necrotic regions,

as well as changing the proportion of necrotic tissue.

As shown with the fitting simulations, the increased specificity offered by microstructural models

has associated drawbacks in terms of model parameter accuracy and precision, and the need to fix

parameters is a clear limitation of the approach. The present work’s approach of using a range of

fixed Di values was chosen as a compromise between fitting it directly, which results in unstable

fits, and fixing it to a single a priori value for all voxels at all time points, which may bias other

parameter estimates. Even with this approach, Di tends to be estimated poorly, showing the

difficulty in robustly characterising diffusion within cells. The lack of sensitivity to intracellular

diffusion with PGSE acquisitions has been demonstrated previously (36), and may be overcome

using oscillating gradient sequences to reach shorter diffusion times (12). More generally, parameter

degeneracy is a recognised problem with this type of model (37), and future work could investigate if

11



tumour microstructural estimates can be improved with alternative acquisition strategies, following

examples in white matter models (38, 39).

Using model comparison to identify sub-regions shares similarities with previous efforts to char-

acterise intra-tumour heterogeneity using clustering (29, 40, 41) or probabilistic classification (42)

of multi-contrast MR data. While it is beyond the scope of the present work to compare model com-

parison and multi-contrast approaches to identifying sub-regions, the inclusion of additional data

beyond DWI would be expected to aid the characterisation. For example, including T2 alongside

time-dependent diffusion measurements may prove useful, building on the diffusion and relaxation

classification developed by Xing et al. (42).

The model comparison procedure considered in the present work also shares similarities with

the approach used recently by Jiang et al. (12), in that both utilise diffusion time-dependence

to distinguish between qualitatively different tumour sub-regions. Jiang et al. acquired pulsed-

and oscillating-gradient diffusion data over a range of diffusion times, and used a model selection

process to determine whether a time-independent diffusivity model or their IMPULSED (Imaging

Microstructural Parameters Using Limited Spectrally Edited Diffusion) model was preferred on a

voxel-wise basis, with the aim of differentiating viable regions from late-stage apoptotic or necrotic

regions in 9L gliomas (12). While conceptually similar, the present work complements this approach

by showing that a similar framework can be employed with a narrower range of diffusion times

from only pulsed-gradient acquisitions, and that the approach can be applied to tumours outside

the brain. In addition, the present work’s inclusion of day six and day ten time points allows

longer-term post-radiotherapy changes to be investigated, extending the four day range covered by

Jiang et al. (12). Perhaps most importantly, the present work not only used model comparison to

determine the voxels from which to extract model parameters, but also used it to obtain a novel

quantitative biomarker, %MM, whose technical and biological validity were evaluated through in

silico simulations, and comparison with histology, respectively.

The in silico simulations provide important information about the technical performance of

%MM estimates. The high specificity shows that true TID voxels are rarely misclassified as MM,

while the lower sensitivity shows that true MM voxels have a tendency to be misclassified as TID.

This is a clear limitation of the technique, hypothesised to be related to the difference in complexity

of the two models being compared; with noisy data, the TID model with one parameter can

appear more favourable than the MM model with four parameters, resulting in a noise-dependent

underestimation of the proposed biomarker. While the existence and magnitude of such a bias will

depend on the specific nature of the models being compared, as well as the SNR of the data, we

suggest that methods seeking to identify and quantify sub-regions with model comparison should be

tested with validation simulations, so that bias and precision can be evaluated; this should form part

of the technical validation of derived biomarkers (2). The in vivo results provide evidence for the

ability of model comparison techniques to identify qualitatively different tumour sub-regions, and to

assess changes in these regions in response to treatment. Specifically, the changes in %MM suggest

that both groups had a reduction in the amount of tissue characterised by restricted diffusion,
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with a larger and earlier decrease in the treated tumours, consistent with radiotherapy-induced

cell death. Note that longitudinal changes in %MM assess the relative proportions of tumour

sub-regions over time; this methodology does not attempt to directly compare the same voxel at

different time points, in contrast to approaches such as the functional diffusion map (26). Applying

such methods to track changes in individual voxels in the current study would be challenging, due

to the lack of normal anatomical structure to guide registration, and the difficulty in establishing

voxel-wise correspondence in tumours which are changing shape and size. The negative correlation

between %MM and histology-derived %necrosis provides support for the hypothesis that regions

favoured by TID correspond to necrotic or oedematous regions, although the histological analysis

did not quantify oedema. A further limitation of the biological validation is that histology results

come from only a single slice, whose location can only approximately be matched to an imaging

slice. Spatial correspondence between histology and imaging is also hindered by shrinkage and

distortion of histological samples due to fixation and sectioning. Improved methods for comparison

of histology and imaging, such as the use of tumour-specific moulds and image registration (41),

would provide a more comprehensive biological validation. Taken together, the in vivo and in silico

results suggest that %MM is related to tumour necrosis, although actual necrotic fractions will be

lower than %MM suggests.

The model comparison provides similar information to the alternative classification using an

ADC threshold, in that both approaches yield metrics that negatively correlate with %necrosis.

However, as ADC values will vary depending on the acquisition protocol (e.g. sequences with

different diffusion times), it is unlikely that a single ADCcut−off will apply across different studies,

limiting the utility of this classification approach. Moreover, relying solely on ADC does not provide

the more specific microstructural information that inherently comes with the %MM approach.

These results provide an initial step in the validation of %MM. Further technical and biological

validation is required if it is to become a robust tool in research or clinical settings. While the

technical performance here is acceptable, further work is needed to understand how the acquisition

protocol affects sensitivity and specificity; this is especially important for clinical applications where

gradient strength will typically be lower. The impact of diffusion time should also be explored, given

its critical role in distinguishing time-dependent and time-independent diffusion regimes. As with

all biomarkers seeking to detect treatment-induced changes, the magnitude of expected biological

changes needs to be compared with parameter accuracy and precision (28). Further biological

validation would involve other tumour types and interventions, along with improved histology-

imaging comparisons.

Conclusions

The diffusion model comparison presented here provides two insights into tumour microstructure

and treatment response. First, there is spatial and radiotherapy-related variation in different mod-

els’ suitability for describing water diffusion in tumour tissue, potentially reflecting different and
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changing microenvironments. Second, within restricted diffusion regions, microstructural parame-

ters are sensitive to radiotherapy-induced changes, and potentially provide more specific microstruc-

tural information than conventional DW-MRI-derived biomarkers.

These results suggest that tumour heterogeneity should be considered when applying models

to pre- and post-treatment DW-MRI data. More generally, models describing any quantitative

imaging data may need to account for spatial and treatment-related changes in model suitability.

This ensures appropriate use of models and potentially yields novel biomarkers of treatment re-

sponse based on physiological differences between tumour sub-regions. The biological and technical

validation of the proposed %MM biomarker suggests it correlates with, but, due to the effects of

noise, overestimates, %necrosis.
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Montréal, Canada 2019. p 1017.

14. Workman P, Aboagye EO, Balkwill F, et al. Guidelines for the welfare and use of animals in

cancer research. Br J Cancer 2010;102:1555–1577.

15. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research

reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010;8:e1000412.

16. Tar PD, Thacker NA, Babur M, et al. A new method for the high-precision assessment of

tumor changes in response to treatment. Bioinformatics 2018;34:2625–2633.

17. Dovedi SJ, Cheadle EJ, Popple AL, et al. Fractionated radiation therapy stimulates antitu-

mor immunity mediated by both resident and infiltrating polyclonal T-cell populations when

combined with PD-1 blockade. Clin Cancer Res 2017;23:5514–5526.

18. McHugh DJ, Zhou FL, Wimpenny I, et al. A biomimetic tumor tissue phantom for validating

diffusion-weighted MRI measurements. Magn Reson Med 2018;80:147–158.

15



19. Portnoy S, Flint JJ, Blackband SJ, Stanisz GJ. Oscillating and pulsed gradient diffusion mag-

netic resonance microscopy over an extended b-value range: implications for the characterization

of tissue microstructure. Magn Reson Med 2013;69:1131–1145.
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Captions:

Fig. 1. Model selection procedure. The microstructural model (MM) and time-independent

diffusion (TID) model were fitted voxel-wise to signals normalised to b = 0 s/mm2, with the model

resulting in the lowest AICc taken as the preferred model for that voxel. Fits for two example

voxels, A and B (red and blue boxes on b = 0 s/mm2 image, respectively) within the tumour ROI

(black outline) are shown, with the red dashed line in the plots representing noise floors below which

signals are excluded from the fits. The MM model was preferred in voxel A, and TID preferred in

voxel B. All voxels in the ROI were then colour coded according to the preferred model, yielding

model preference maps (right).

Fig. 2. Fitting simulations. (A) Boxplots of median percentage error in model parameters for

fit-Di (white) and discrete-Di (grey) fitting, for four ground truth Di values. (B) Boxplots of the

percentage of accepted fits (i.e. where no parameter is within 1% of the fit constraints), for fit-Di

(white) and discrete-Di (grey) fitting, for four ground truth Di values. In (A) and (B) boxplots in

each panel represent distributions over the 24 different ground truth microstructures for the given

ground truth Di, together presenting results for all 96 microstructures generated.

Fig 3. %MM technical validation simulations. (A) Estimated %MM values (mean ± standard

deviation) plotted against ground truth, for noiseless (circles) and noisy (crosses) datasets. The

dashed line is the line of identity. (B) Accuracy, sensitivity, and specificity (mean ± standard

deviation) plotted against ground truth, for the noisy datasets.

Fig. 4. Conventional ADC over time. (A) Whole-tumour median ADC values plotted as a

function of time, for control (left) and radiotherapy (RT, right) groups. Individual data points are

median values for a given tumour, and lines connect the same tumour at different time points. (B)

Same data as (A), plotted as mean ± standard error over subjects, for control (solid line) and

treated (dashed line) groups.

Fig. 5. %MM and %necrosis. (A) %MM plotted against percentage necrosis for control (cir-

cles) and radiotherapy (RT, crosses) groups. Using all data points, there is a significant negative

correlation (Pearson’s correlation coefficient, ρ = −0.64, P = 0.004). (B) Example H&E images

for two control and two RT tumours, illustrating the staining and segmentation used to deter-

mine %necrosis. Orange and blue regions in the segmentation correspond to tumour and necrosis,

respectively.

Fig. 6. %MM over time. (A) Percentage of voxels where the microstructural model (MM) was

favoured over TID, plotted as a function of time for control (left) and radiotherapy (RT, right)

groups. Individual data points are values for a given tumour, and lines connect the same tumour

at different time points. (B) Same data as (A), plotted as mean ± standard error over subjects,

for control (solid line) and treated (dashed line) groups.

Fig. 7. Example b = 0 s/mm2 image at day 6 (top left, with ROI in black) and corresponding

conventional ADC map (bottom left). Parameter maps for MM (central four panels) and TID (top

right) are also shown, along with the model preference map (bottom right, overlaid on b = 0 s/mm2

image for voxels in the ROI). The TID model was preferred in the central region of high b = 0
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s/mm2 image signal, while MM tended to be preferred around the rim and throughout the smaller

component of the bilobular tumour.

Fig. 8. MM parameters over time. (A) Median values for MM parameters, from regions where

MM is favoured over TID, plotted as a function of time for control (first row) and radiotherapy

(RT, second row) groups. Individual data points are median values for a given tumour, and lines

connect the same tumour at different time points. (B) Same data as (A), with each parameter

plotted as mean ± standard error over subjects, for control (solid lines) and treated (dashed lines)

groups.

Supporting Information Captions:

Fig. S1. Model selection procedure with discrete-Di fitting. The microstructural model (MM)

was fitted voxel-wise to signals normalised to b = 0 s/mm2, with separate fits for Di fixed to

0.5, 1.0, 1.5, 2.0, 2.5 µm2/ms. Fits for one example voxel, A (red box on b = 0 s/mm2 image),

within the tumour ROI (black outline) are shown. The fit with the highest R2 was accepted, and

was then compared with the time-independent diffusion (TID) model, as described in the main text

and in Figure 1.

Fig. S2. Violin plots of parameter distributions from fitting simulations. (A) - (D) show results

for ground truth Di = 0.2, 1.1, 2.0, and 2.9 µm2/ms, respectively. In each case, distributions show

results from 1500 fits for fit-Di and discrete-Di, for 24 microstructures with different ground truths,

identified by the black horizontal lines. For example, microstructure 1 in (A) has a ground truth

of R = 5 µm, Di = 0.2 µm2/ms, De = 0.2 µm2/ms, and fi = 0.25. The red square represents the

median of each distribution. For example, a parameter estimated with high accuracy and precision

would have a narrow grey band and red square both centred on the black line.

Fig S3. Median conventional ADC and %necrosis. Whole-tumour median ADC plotted against

percentage necrosis for control (circles) and radiotherapy (RT, crosses) groups. Using all data

points, there is a significant positive correlation (Pearson’s correlation coefficient, ρ = 0.56, P =

0.016).

Fig. S4. Conventional ADC threshold and %necrosis. (A) A range of ADC thresholds,

ADCthresh = 0.1 − 3 µm2/ms, were applied to all central-slice conventional ADC datasets; for

each threshold and dataset, the percentage of voxels with ADC below the given threshold was cal-

culated. Curves show this percentage as a function of threshold for all tumours at all time points;

e.g. no voxels have ADC < 0.1 µm2/ms, and all voxels have ADC ≤ 3 µm2/ms. (B) For each

threshold, the corresponding percentage of voxels below the threshold was correlated with %necrosis

from histology; this only used ADC data from subjects’ final scan. Pearson’s correlation coefficient,

ρ, is plotted as a function of ADCthresh, showing that the maximum absolute ρ is obtained with a

threshold of 1.07 µm2/ms, termed the ADCcut−off . (C) The correlation for this maximum absolute

ρ is shown, for control (circles) and radiotherapy (RT, crosses) groups (ρ = −0.65, P = 0.003).

Fig. S5. Bivariate histograms of whole-tumour voxel-wise D′ and ADC values, for control

(top) and radiotherapy-treated (bottom) tumours. In each case, plots are shown for all subjects
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(columns) at all time points (rows). The black line in each plot represents D′ = ADC; the colour

scale represents the normalised bin count and is the same for each plot. When both parameters are

low, the tendency is for ADC to be higher than D′ (points are above the black line), while when

both parameters are high, ADC and D′ are similar (points lie closer to the black line). This trend

is expected as D′ is obtained from short and long diffusion times, and reflects an average of high

and low diffusivities when diffusion is time-dependent, while ADC is measured only at the short

diffusion time where the diffusivity will be higher; the two parameters are equivalent when diffusion

is time-independent, which here tends to be at higher diffusivities. Note that these plots include

D′ values from all tumour voxels, including those where the MM model is preferred over the TID

model, that is, where diffusion is time-dependent.
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FIG. 1. Model selection procedure. The microstructural model (MM) and time-independent dif-
fusion (TID) model were fitted voxel-wise to signals normalised to b = 0 s/mm2, with the model
resulting in the lowest AICc taken as the preferred model for that voxel. Fits for two example
voxels, A and B (red and blue boxes on b = 0 s/mm2 image, respectively) within the tumour ROI
(black outline) are shown, with the red dashed line in the plots representing noise floors below which
signals are excluded from the fits. The MM model was preferred in voxel A, and TID preferred in
voxel B. All voxels in the ROI were then colour coded according to the preferred model, yielding
model preference maps (right).
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FIG. 2. Fitting simulations. (A) Boxplots of median percentage error in model parameters for
fit-Di (white) and discrete-Di (grey) fitting, for four ground truth Di values. (B) Boxplots of the
percentage of accepted fits (i.e. where no parameter is within 1% of the fit constraints), for fit-Di

(white) and discrete-Di (grey) fitting, for four ground truth Di values. In (A) and (B) boxplots in
each panel represent distributions over the 24 different ground truth microstructures for the given
ground truth Di, together presenting results for all 96 microstructures generated.
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FIG. 3. %MM technical validation simulations. (A) Estimated %MM values (mean ± standard
deviation) plotted against ground truth, for noiseless (circles) and noisy (crosses) datasets. The
dashed line is the line of identity. (B) Accuracy, sensitivity, and specificity (mean ± standard
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FIG. 5. %MM and %necrosis. (A) %MM plotted against percentage necrosis for control (cir-
cles) and radiotherapy (RT, crosses) groups. Using all data points, there is a significant negative
correlation (Pearson’s correlation coefficient, ρ = −0.64, P = 0.004). (B) Example H&E images
for two control and two RT tumours, illustrating the staining and segmentation used to deter-
mine %necrosis. Orange and blue regions in the segmentation correspond to tumour and necrosis,
respectively.
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FIG. 6. %MM over time. (A) Percentage of voxels where the microstructural model (MM) was
favoured over TID, plotted as a function of time for control (left) and radiotherapy (RT, right)
groups. Individual data points are values for a given tumour, and lines connect the same tumour
at different time points. (B) Same data as (A), plotted as mean ± standard error over subjects,
for control (solid line) and treated (dashed line) groups.

FIG. 7. Example b = 0 s/mm2 image at day 6 (top left, with ROI in black) and corresponding
conventional ADC map (bottom left). Parameter maps for MM (central four panels) and TID (top
right) are also shown, along with the model preference map (bottom right, overlaid on b = 0 s/mm2

image for voxels in the ROI). The TID model was preferred in the central region of high b = 0
s/mm2 image signal, while MM tended to be preferred around the rim and throughout the smaller
component of the bilobular tumour.
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FIG. 8. MM parameters over time. (A) Median values for MM parameters, from regions where
MM is favoured over TID, plotted as a function of time for control (first row) and radiotherapy
(RT, second row) groups. Individual data points are median values for a given tumour, and lines
connect the same tumour at different time points. (B) Same data as (A), with each parameter
plotted as mean ± standard error over subjects, for control (solid lines) and treated (dashed lines)
groups.
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