100 research outputs found

    Dietary Cholesterol Promotes Adipocyte Hypertrophy and Adipose Tissue Inflammation in Visceral, But Not Subcutaneous, Fat in Monkeys

    Get PDF
    Objective—Excessive caloric intake is associated with obesity and adipose tissue dysfunction. However, the role of dietary cholesterol in this process is unknown. The aim of this study was to determine whether increasing dietary cholesterol intake alters adipose tissue cholesterol content, adipocyte size, and endocrine function in nonhuman primates. Approach and Results—Age-matched, male African Green monkeys (n=5 per group) were assigned to one of three diets containing 0.002 (Lo), 0.2 (Med) or 0.4 (Hi) mg cholesterol/Kcal. After 10 weeks of diet feeding, animals were euthanized for adipose tissue, liver, and plasma collection. With increasing dietary cholesterol, free cholesterol (FC) content and adipocyte size increased in a step-wise manner in visceral, but not subcutaneous fat, with a significant association between visceral adipocyte size and FC content (r2=0.298; n=15; p=0.035). In visceral fat, dietary cholesterol intake was associated with: 1) increased pro-inflammatory gene expression and macrophage recruitment, 2) decreased expression of genes involved in cholesterol biosynthesis and lipoprotein uptake, and 3) increased expression of proteins involved in FC efflux. Conclusions—Increasing dietary cholesterol selectively increases visceral fat adipocyte size, FC and macrophage content, and proinflammatory gene expression in nonhuman primates

    Reduction of VLDL Secretion Decreases Cholesterol Excretion in Niemann-Pick C1-Like 1 Hepatic Transgenic Mice

    Get PDF
    An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE

    Assay for high glucose-mediated islet cell sensitization to apoptosis induced by streptozotocin and cytokines

    Get PDF
    Pancreatic β-cell apoptosis is known to participate in the β-cell destruction process that occurs in diabetes. It has been described that high glucose level induces a hyperfunctional status which could provoke apoptosis. This phenomenon is known as glucotoxicity and has been proposed that it can play a role in type 1 diabetes mellitus pathogenesis. In this study we develop an experimental design to sensitize pancreatic islet cells by high glucose to streptozotocin (STZ) and proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interferon (IFN)-γ]-induced apoptosis. This method is appropriate for subsequent quantification of apoptotic islet cells stained with Tdt-mediated dUTP Nick-End Labeling (TUNEL) and protein expression assays by Western Blotting (WB)

    Coordinately Regulated Alternative Splicing of Genes Involved in Cholesterol Biosynthesis and Uptake

    Get PDF
    Genes involved in cholesterol biosynthesis and uptake are transcriptionally regulated in response to cellular sterol content in a coordinated manner. A number of these genes, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and LDL receptor (LDLR), undergo alternative splicing, resulting in reductions of enzyme or protein activity. Here we demonstrate that cellular sterol depletion suppresses, and sterol loading induces, alternative splicing of multiple genes involved in the maintenance of cholesterol homeostasis including HMGCR and LDLR, the key regulators of cellular cholesterol biosynthesis and uptake, respectively. These changes were observed in both in vitro studies of the HepG2 human hepatoma derived cell line, as well as in vivo studies of St. Kitts vervets, also known as African green monkeys, a commonly used primate model for investigating cholesterol metabolism. These effects are mediated in part by sterol regulation of polypyrimidine tract binding protein 1 (PTBP1), since knock-down of PTBP1 eliminates sterol induced changes in alternative splicing of several of these genes. Single nucleotide polymorphisms (SNPs) that influence HMGCR and LDLR alternative splicing (rs3846662 and rs688, respectively), have been associated with variation in plasma LDL-cholesterol levels. Sterol-induced changes in alternative splicing are blunted in carriers of the minor alleles for each of these SNPs, indicating an interaction between genetic and non-genetic regulation of this process. Our results implicate alternative splicing as a novel mechanism of enhancing the robust transcriptional response to conditions of cellular cholesterol depletion or accumulation. Thus coordinated regulation of alternative splicing may contribute to cellular cholesterol homeostasis as well as plasma LDL levels

    The Toxic Effects of Cigarette Additives. Philip Morris' Project Mix Reconsidered: An Analysis of Documents Released through Litigation

    Get PDF
    Stanton Glantz and colleagues analyzed previously secret tobacco industry documents and peer-reviewed published results of Philip Morris' Project MIX about research on cigarette additives, and show that this research on the use of cigarette additives cannot be taken at face value

    CONNECT for quality: protocol of a cluster randomized controlled trial to improve fall prevention in nursing homes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quality improvement (QI) programs focused on mastery of content by individual staff members are the current standard to improve resident outcomes in nursing homes. However, complexity science suggests that learning is a social process that occurs within the context of relationships and interactions among individuals. Thus, QI programs will not result in optimal changes in staff behavior unless the context for social learning is present. Accordingly, we developed CONNECT, an intervention to foster systematic use of management practices, which we propose will enhance effectiveness of a nursing home Falls QI program by strengthening the staff-to-staff interactions necessary for clinical problem-solving about complex problems such as falls. The study aims are to compare the impact of the CONNECT intervention, plus a falls reduction QI intervention (CONNECT + FALLS), to the falls reduction QI intervention alone (FALLS), on fall-related process measures, fall rates, and staff interaction measures.</p> <p>Methods/design</p> <p>Sixteen nursing homes will be randomized to one of two study arms, CONNECT + FALLS or FALLS alone. Subjects (staff and residents) are clustered within nursing homes because the intervention addresses social processes and thus must be delivered within the social context, rather than to individuals. Nursing homes randomized to CONNECT + FALLS will receive three months of CONNECT first, followed by three months of FALLS. Nursing homes randomized to FALLS alone receive three months of FALLs QI and are offered CONNECT after data collection is completed. Complexity science measures, which reflect staff perceptions of communication, safety climate, and care quality, will be collected from staff at baseline, three months after, and six months after baseline to evaluate immediate and sustained impacts. FALLS measures including quality indicators (process measures) and fall rates will be collected for the six months prior to baseline and the six months after the end of the intervention. Analysis will use a three-level mixed model.</p> <p>Discussion</p> <p>By focusing on improving local interactions, CONNECT is expected to maximize staff's ability to implement content learned in a falls QI program and integrate it into knowledge and action. Our previous pilot work shows that CONNECT is feasible, acceptable and appropriate.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00636675">NCT00636675</a></p

    Extracellular matrix formation enhances the ability of streptococcus pneumoniae to cause invasive disease

    Get PDF
    Extent: 17p.During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Here, we carried out a biofilm assay on opaque and transparent variants of a clinical serotype 19F strain WCH159. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100- fold greater in vitro adherence to A549 cells than transparent bacteria. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, which is involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease.Claudia Trappetti, Abiodun D. Ogunniyi, Marco R. Oggioni and James C. Pato

    Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes

    Get PDF
    Soil enzymes are catalysts of organic matter depolymerisation, which is of critical importance for ecosystem carbon (C) cycling. Better understanding of the sensitivity of enzymes to temperature will enable improved predictions of climate change impacts on soil C stocks. These impacts may be especially large in tropical montane forests, which contain large amounts of soil C. We determined the temperature sensitivity (Q 10) of a range of hydrolytic and oxidative enzymes involved in organic matter cycling from soils along a 1900 m elevation gradient (a 10 °C mean annual temperature gradient) of tropical montane forest in the Peruvian Andes. We investigated whether the activity (V max) of selected enzymes: (i) exhibited a Q 10 that varied with elevation and/or soil properties; and (ii) varied among enzymes and according to the complexity of the target substrate for C-degrading enzymes. The Q 10 of V max for β-glucosidase and β-xylanase increased with increasing elevation and declining mean annual temperature. For all other enzymes, including cellobiohydrolase, N-acetyl β-glucosaminidase and phosphomonoesterase, the Q 10 of V max did not vary linearly with elevation. Hydrolytic enzymes that degrade more complex C compounds had a greater Q 10 of V max, but this pattern did not apply to oxidative enzymes because phenol oxidase had the lowest Q 10 value of all enzymes studied here. Our findings suggest that regional differences in the temperature sensitivities of different enzyme classes may influence the terrestrial C cycle under future climate warming

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Energy Levels of Light Nuclei. III

    Full text link
    corecore