165 research outputs found

    Prevalence of antimicrobial resistance and association with patient outcomes in a rural Kenyan hospital

    Get PDF
    Data on antimicrobial resistance (AMR) and association with outcomes in resource-variable intensive care units (ICU) are lacking. Data currently available are limited to large, urban centers. We attempted to understand this locally through a dual-purpose, retrospective study. Cohort A consisted of adult and pediatric patients who had blood, urine, or cerebrospinal fluid cultures obtained from 2016 to 2020. A total of 3,013 isolates were used to create the Kijabe Hospital’s first antibiogram. Gram-negative organisms were found to be less than 50% susceptible to third- and fourth-generation cephalosporins, 67% susceptible to piperacillin–tazobactam, 87% susceptible to amikacin, and 93% susceptible to meropenem. We then evaluated the association between AMR and clinical characteristics, management, and outcomes among ICU patients (Cohort B). Demographics, vital signs, laboratory results, management data, and outcomes were obtained. Antimicrobial resistance was defined as resistance to one or more antimicrobials. Seventy-six patients were admitted to the ICU with bacteremia during this time. Forty complete paper charts were found for review. Median age was 34 years (interquartile range, 9–51), 26 patients were male (65%), and 28 patients were older than 18 years (70%). Septic shock was the most common diagnosis (n = 22, 55%). Six patients had AMR bacteremia; Escherichia coli was most common (n = 3, 50%). There was not a difference in mortality between patients with AMR versus non-AMR infections (P = 0.54). This study found a prevalence of AMR. There was no association between AMR and outcomes among ICU patients. More studies are needed to understand the impact of AMR in resource-variable settings

    Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes

    Get PDF
    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries

    Coral reef ecology in the Anthropocene

    Get PDF
    We are in the Anthropocene—an epoch where humans are the dominant force of planetary change. Ecosystems increasingly reflect rapid human-induced, socioeconomic and cultural selection rather than being a product of their surrounding natural biophysical setting. This poses the intriguing question: To what extent do existing ecological paradigms capture and explain the current ecological patterns and processes we observe? We argue that, although biophysical drivers still influence ecosystem structure and function at particular scales, their ability to offer predictive capacity over coupled social–ecological systems is increasingly compromised as we move further into the Anthropocene. Traditionally, the dynamics of coral reefs have been studied in response to their proximate drivers of change rather than their underlying socioeconomic and cultural drivers. We hypothesise this is limiting our ability to accurately predict spatial and temporal changes in coral reef ecosystem structure and function. We propose “social–ecological macroecology” as a novel approach within the field of coral reef ecology to a) identify the interactive effects of biophysical and socioeconomic and cultural drivers of coral reef ecosystems across spatial and temporal scales; b) test the robustness of existing coral reef paradigms; c) explore whether existing paradigms can be adapted to capture the dynamics of contemporary coral reefs; and d) if they cannot, develop novel coral reef social–ecological paradigms, where human dynamics are part of the paradigms rather than the drivers of them. Human socioeconomic and cultural processes must become embedded in coral reef ecological theory and practice as much as biophysical processes are today if we are to predict and manage these systems successfully in this era of rapid change. This necessary shift in our approach to coral reef ecology will be challenging and will require truly interdisciplinary collaborations between the natural and social sciences. A plain language summary is available for this article

    Empirical Models of Transitions between Coral Reef States: Effects of Region, Protection, and Environmental Change

    Get PDF
    There has been substantial recent change in coral reef communities. To date, most analyses have focussed on static patterns or changes in single variables such as coral cover. However, little is known about how community-level changes occur at large spatial scales. Here, we develop Markov models of annual changes in coral and macroalgal cover in the Caribbean and Great Barrier Reef (GBR) regions

    Evaluation of the Adenocarcinoma-Associated Gene AGR2 and the Intestinal Stem Cell Marker LGR5 as Biomarkers in Colorectal Cancer

    Get PDF
    We aim to estimate the diagnostic performances of anterior gradient homolog-2 (AGR2) and Leucine-rich repeat-containing-G-protein-coupled receptor 5 (LGR5) in peripheral blood (PB) as mRNA biomarkers in colorectal cancer (CRC) and to explore their prognostic significance. Real-time PCR was used to analyze AGR2 and LGR5 in 54 stages I-IV CRC patients and 19 controls. Both mRNAs were significantly increased in PB from CRC patients compared to controls. The area under the receiver-operating characteristic curves were 0.722 (p = 0.006), 0.376 (p = 0.123) and 0.767 (p = 0.001) for AGR2, LGR5 and combined AGR2/LGR5, respectively. The AGR2/LGR5 assay resulted in 67.4% sensitivity and 94.7% specificity. AGR2 correlated with pT3–pT4 and high-grade tumors. LGR5 correlated with metastasis, R2 resections and high-grade. The progression-free survival (PFS) of patients with high AGR2 was reduced (p = 0.037; HR, 2.32), also in the stage I-III subgroup (p = 0.046). LGR5 indicated a poor prognosis regarding both PFS (p = 0.007; HR, 1.013) and overall survival (p = 0.045; HR, 1.01). High AGR2/LGR5 was associated with poor PFS (p = 0.014; HR, 2.8) by multivariate analysis. Our findings indicate that the assessment of AGR2 and LGR5 in PB might reflect the presence of circulating tumor cells (CTC) and stem cell like CTC in CRC. Increased AGR2 and LGR5 are associated with poor outcomes

    Indigenous Knowledge and Long-term Ecological Change: Detection, Interpretation, and Responses to Changing Ecological Conditions in Pacific Island Communities

    Get PDF
    When local resource users detect, understand, and respond to environmental change they can more effectively manage environmental resources. This article assesses these abilities among artisanal fishers in Roviana Lagoon, Solomon Islands. In a comparison of two villages, it documents local resource users’ abilities to monitor long-term ecological change occurring to seagrass meadows near their communities, their understandings of the drivers of change, and their conceptualizations of seagrass ecology. Local observations of ecological change are compared with historical aerial photography and IKONOS satellite images that show 56 years of actual changes in seagrass meadows from 1947 to 2003. Results suggest that villagers detect long-term changes in the spatial cover of rapidly expanding seagrass meadows. However, for seagrass meadows that showed no long-term expansion or contraction in spatial cover over one-third of respondents incorrectly assumed changes had occurred. Examples from a community-based management initiative designed around indigenous ecological knowledge and customary sea tenure governance show how local observations of ecological change shape marine resource use and practices which, in turn, can increase the management adaptability of indigenous or hybrid governance systems

    Desenvolvimento de um roteiro conceitual para a gestão da biodiversidade e dos serviços ecossistêmicos no Caribe mexicano

    Get PDF
    Coral reefs and mangroves support rich biodiversity and provide ecosystem services that range from food, recreational benefits and coastal protection services, among others. They are one of the most threatened ecosystems by urbanization processes. In this context, we developed a conceptual framework for the management of biodiversity and ecosystem services for these coastal environments. We based our workflow on two sections: “Information base” and “Governance” and use the Puerto Morelos Coastal region as a case study for coastal protection. Puerto Morelos is between two of the most touristic destinations of Mexico (Playa del Carmen and Cancun) that has experienced an increase of population in the past four decades resulting in an intensification of multiple threats to its ecosystems. We characterized the two ecosystems with a “Management Units” strategy. An expert-based ecosystem services matrix was also described in order to connect mangroves and coral reef ecosystems with the multiple beneficiaries. Then an ecosystem model (conceptual model and Global Biodiversity model) was developed. The conceptual model was useful in understanding the interplay processes between systems regarding the ecosystem service of “Coastal Protection”. The Global Biodiversity model evidenced the human-induced shifts in the biodiversity for mangrove and coral reefs ecosystems. Also, a projection for 2035 of “best” and “worst” scenarios was applied using GLOBIO3. A DPSIR conceptual framework was used to analyze environmental problems regarding ecosystem services maintenance. Finally, we evaluated a set of policies associated with these ecosystems that favor coastal protection integrity. This framework facilitates the identification of the most relevant processes and controls about the provision of coastal protection service. It can also be useful to better target management actions and as a tool to identify future management needs to tackle the challenges preventing more effective conservation of coastal environments.Recifes de coral e manguezais possuem rica biodiversidade e fornecem serviços ecossistêmicos, tais como, alimento, recreação, proteção costeira, entre outros. Esses ecossistemas encontram-se entre os mais ameaçados pelos processos de urbanização. Nesse contexto, desenvolvemos um roteiro conceitual para a gestão da biodiversidade e dos serviços ecossistêmicos desses ambientes costeiros. Organizamos nossa sequência de passos de trabalho em duas seções: “Base de informações” e “Governança” e usamos a região costeira da cidade de Puerto Morelos (México) como um estudo de caso para analisar o serviço de proteção de costa. Puerto Morelos encontra-se entre dois dos destinos mais turísticos do México (Playa del Carmen e Cancún), e portanto sua população vem aumentando nas últimas quatro décadas, resultando na intensificação de múltiplas ameaças para os ecossistemas. Primeiramente, caracterizamos os dois ecossistemas identificando-os como “Unidades de Gestão”, detalhando seus principais componentes e processos. Através de uma “Matriz de serviços ecossistêmicos”, construída com base na opinião de especialistas, foram sistematizados os principais serviços ecossistêmicos prestados pelos manguezais e recifes de corais aos múltiplos beneficiários. Em seguida, foi desenvolvida uma modelagem do sistema (e ecossistemas) através de sua representação na forma de um modelo conceitual e um modelo numérico de Biodiversidade Global. O modelo conceitual facilitou a compreensão dos processos de interação entre sistemas em relação ao serviço “Proteção Costeira”. O modelo numérico evidenciou as mudanças induzidas pelo homem na biodiversidade dos ecossistemas de manguezal e recifes de coral. Além disso, uma projeção dos cenários “melhor” e “pior” foi desenvolvida para 2035 usando GLOBIO3. A Estrutura conceitual DPSIR foi aplicada para analisar problemas ambientais relacionados à manutenção dos serviços ecossistêmicos. Finalmente, avaliamos um conjunto de políticas públicas associadas a esses ecossistemas e que favorecem a integridade da proteção costeira. Portanto, o roteiro facilitou a identificação dos principais processos e controles para a provisão de um serviço ecossistêmico. Além disso, pode ser útil para direcionar melhor as ações de gerenciamento, bem como, uma ferramenta para identificar necessidades futuras de planejamento e gestão para enfrentar desafios que permitam uma conservação mais eficaz dos ambientes costeiros.Fil: Sánchez Quinto, Andrés. Universidad Nacional Autónoma de México; MéxicoFil: Costa, Julliet Correa da. Universidade Federal de Santa Catarina; BrasilFil: Zamboni, Nadia Selene. Universidade Federal do Rio Grande do Norte; BrasilFil: Sanches, Fábio H. C.. Universidade Federal de Sao Paulo; BrasilFil: Principe, Silas C.. Universidade de Sao Paulo; BrasilFil: Viotto, Evangelina del Valle. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Casagranda, Maria Elvira. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Lima, Francisco A. da Veiga. Universidade Federal de Santa Catarina; BrasilFil: Possamai, Bianca. Universidade Federal Do Rio Grande.; BrasilFil: Faroni Perez, Larisse. Universidade Federal de Juiz de Fora; Brasi

    Integrating social–ecological vulnerability assessments with climate forecasts to improve local climate adaptation planning for coral reef fisheries in Papua New Guinea

    Get PDF
    A major gap exists in integrating climate projections and social–ecological vulnerability analyses at scales that matter, which has affected local-scale adaptation planning and actions to date. We address this gap by providing a novel methodology that integrates information on: (i) the expected future climate, including climate-related extreme events, at the village level; (ii) an ecological assessment of the impacts of these climate forecasts on coral reefs; and (iii) the social adaptive capacity of the artisanal fishers, to create an integrated vulnerability assessment on coastal communities in five villages in Papua New Guinea. We show that, despite relatively proximate geographies, there are substantial differences in both the predicted extreme rainfall and temperature events and the social adaptive capacity among the five fishing-dependent communities, meaning that they have likely different vulnerabilities to future climate change. Our methodology shows that it is possible to capture social information and integrate this with climate and ecological modeling in ways that are best suited to address the impacts of climate-mediated environmental changes currently underway across different scales

    The small pelagic fishery of the Pemba Channel, Tanzania: what we know and what we need to know for management under climate change

    Get PDF
    Small pelagic fish, including anchovies, sardines and sardinellas, mackerels, capelin, hilsa, sprats and herrings, are distributed widely, from the tropics to the far north Atlantic Ocean and to the southern oceans off Chile and South Africa. They are most abundant in the highly productive major eastern boundary upwelling systems and are characterised by significant natural variations in biomass. Overall, small pelagic fisheries represent about one third of global fish landings although a large proportion of the catch is processed into animal feeds. Nonetheless, in some developing countries in addition to their economic value, small pelagic fisheries also make an important contribution to human diets and the food security of many low-income households. Such is the case for many communities in the Zanzibar Archipelago and on mainland Tanzania in the Western Indian Ocean. Of great concern in this region, as elsewhere, is the potential impact of climate change on marine and coastal ecosystems in general, and on small pelagic fisheries in particular. This paper describes data and information available on Tanzania's small pelagic fisheries, including catch and effort, management protocols and socio-economic significance
    corecore