11 research outputs found

    Effects of Normobaric Hypoxia on Oculomotor Dynamics of Aviator Students during a Simulated Flight Task

    Get PDF
    Hypoxia occurs when the body\u27s tissues are unable to obtain adequate oxygen supply and is the primary environmental factor present when pilots are exposed to increasing altitude levels. Hypoxia leads to impaired vision, cognition, and motor control function, which can negatively affect performance and become deadly if a pilot becomes incapacitated. Thus, objective identification of early-onset hypoxia is critical to increase the time of useful consciousness and prevent physiological episodes. Of the few studies utilizing eye-tracking, there is disagreement and mixed results concerning saccadic eye metrics as a means to measure and detect hypoxia. Therefore, the purpose of this study was to investigate saccadic velocity changes driven by acute normobaric hypoxia. Using a noninvasive infrared-based eye-tracking device, we recorded saccadic average peak velocity during flight tasks at simulated altitudes of 0 ft, 12,500 ft, and 19,000 ft. No changes were observed in saccadic average peak velocity among different altitude exposures. As time on task increased, saccadic average peak velocity decreased, suggesting that eye metrics can serve as an indicator of mental fatigue

    No Deal: Donald Trump's Leadership of Congress

    No full text

    Primary prevention of variceal bleeding in people with oesophageal varices due to liver cirrhosis:a network meta-analysis

    Get PDF
    BackgroundApproximately 40% to 95% of people with cirrhosis have oesophageal varices. About 15% to 20% of oesophageal varices bleed in about one to three years. There are several different treatments to prevent bleeding, including: beta-blockers, endoscopic sclerotherapy, and variceal band ligation. However, there is uncertainty surrounding their individual and relative benefits and harms.ObjectivesTo compare the benefits and harms of different treatments for prevention of first variceal bleeding from oesophageal varices in adults with liver cirrhosis through a network meta-analysis and to generate rankings of the different treatments for prevention of first variceal bleeding from oesophageal varices according to their safety and efficacy.Search methodsWe searched CENTRAL, MEDLINE, Embase, Science Citation Index Expanded, World Health Organization International Clinical Trials Registry Platform, and trials registers to December 2019 to identify randomised clinical trials in people with cirrhosis and oesophageal varices with no history of bleeding.Selection criteriaWe included only randomised clinical trials (irrespective of language, blinding, or status) in adults with cirrhosis and oesophageal varices with no history of bleeding. We excluded randomised clinical trials in which participants had previous bleeding from oesophageal varices and those who had previously undergone liver transplantation or previously received prophylactic treatment for oesophageal varices.Data collection and analysisWe performed a network meta-analysis with OpenBUGS using Bayesian methods and calculated the differences in treatments using hazard ratios (HR), odds ratios (OR), and rate ratios with 95% credible intervals (CrI) based on an available-case analysis, according to National Institute for Health and Care Excellence Decision Support Unit guidance. We performed the direct comparisons from randomised clinical trials using the same codes and the same technical details.Main resultsWe included 66 randomised clinical trials (6653 participants) in the review. Sixty trials (6212 participants) provided data for one or more comparisons in the review. The trials that provided the information included people with cirrhosis due to varied aetiologies and those at high risk of bleeding from oesophageal varices. The follow-up in the trials that reported outcomes ranged from 6 months to 60 months. All but one of the trials were at high risk of bias. The interventions compared included beta-blockers, no active intervention, variceal band ligation, sclerotherapy, beta-blockers plus variceal band ligation, beta-blockers plus nitrates, nitrates, beta-blockers plus sclerotherapy, and portocaval shunt. Overall, 21.2% of participants who received non-selective beta-blockers ('beta-blockers') - the reference treatment (chosen because this was the most common treatment compared in the trials) - died during 8-month to 60-month follow-up. Based on low-certainty evidence, beta-blockers, variceal band ligation, sclerotherapy, and beta-blockers plus nitrates all had lower mortality versus no active intervention (beta-blockers: HR 0.49, 95% CrI 0.36 to 0.67; direct comparison HR: 0.59, 95% CrI 0.42 to 0.83; 10 trials, 1200 participants; variceal band ligation: HR 0.51, 95% CrI 0.35 to 0.74; direct comparison HR 0.49, 95% CrI 0.12 to 2.14; 3 trials, 355 participants; sclerotherapy: HR 0.66, 95% CrI 0.51 to 0.85; direct comparison HR 0.61, 95% CrI 0.41 to 0.90; 18 trials, 1666 participants; beta-blockers plus nitrates: HR 0.41, 95% CrI 0.20 to 0.85; no direct comparison). No trials reported health-related quality of life. Based on low-certainty evidence, variceal band ligation had a higher number of serious adverse events (number of events) than beta-blockers (rate ratio 10.49, 95% CrI 2.83 to 60.64; 1 trial, 168 participants). Based on low-certainty evidence, beta-blockers plus nitrates had a higher number of 'any adverse events (number of participants)' than beta-blockers alone (OR 3.41, 95% CrI 1.11 to 11.28; 1 trial, 57 participants). Based on low-certainty evidence, adverse events (number of events) were higher in sclerotherapy than in beta-blockers (rate ratio 2.49, 95% CrI 1.53 to 4.22; direct comparison rate ratio 2.47, 95% CrI 1.27 to 5.06; 2 trials, 90 participants), and in beta-blockers plus variceal band ligation than in beta-blockers (direct comparison rate ratio 1.72, 95% CrI 1.08 to 2.76; 1 trial, 140 participants). Based on low-certainty evidence, any variceal bleed was lower in beta-blockers plus variceal band ligation than in beta-blockers (direct comparison HR 0.21, 95% CrI 0.04 to 0.71; 1 trial, 173 participants). Based on low-certainty evidence, any variceal bleed was higher in nitrates than beta-blockers (direct comparison HR 6.40, 95% CrI 1.58 to 47.42; 1 trial, 52 participants). The evidence indicates considerable uncertainty about the effect of the interventions in the remaining comparisons.Authors' conclusionsBased on low-certainty evidence, beta-blockers, variceal band ligation, sclerotherapy, and beta-blockers plus nitrates may decrease mortality compared to no intervention in people with high-risk oesophageal varices in people with cirrhosis and no previous history of bleeding. Based on low-certainty evidence, variceal band ligation may result in a higher number of serious adverse events than beta-blockers. The evidence indicates considerable uncertainty about the effect of beta-blockers versus variceal band ligation on variceal bleeding. The evidence also indicates considerable uncertainty about the effect of the interventions in most of the remaining comparisons

    Treatment for bleeding oesophageal varices in people with decompensated liver cirrhosis:a network meta-analysis

    No full text
    BACKGROUND: Approximately 40% to 95% of people with liver cirrhosis have oesophageal varices. About 15% to 20% of oesophageal varices bleed within about one to three years after diagnosis. Several different treatments are available, including, among others, endoscopic sclerotherapy, variceal band ligation, somatostatin analogues, vasopressin analogues, and balloon tamponade. However, there is uncertainty surrounding the individual and relative benefits and harms of these treatments. OBJECTIVES: To compare the benefits and harms of different initial treatments for variceal bleeding from oesophageal varices in adults with decompensated liver cirrhosis, through a network meta-analysis; and to generate rankings of the different treatments for acute bleeding oesophageal varices, according to their benefits and harms. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, Science Citation Index Expanded, World Health Organization International Clinical Trials Registry Platform, and trials registers until 17 December 2019, to identify randomised clinical trials (RCTs) in people with cirrhosis and acute bleeding from oesophageal varices. SELECTION CRITERIA: We included only RCTs (irrespective of language, blinding, or status) in adults with cirrhosis and acutely bleeding oesophageal varices. We excluded RCTs in which participants had bleeding only from gastric varices, those who failed previous treatment (refractory bleeding), those in whom initial haemostasis was achieved before inclusion into the trial, and those who had previously undergone liver transplantation. DATA COLLECTION AND ANALYSIS: We performed a network meta-analysis with OpenBUGS software, using Bayesian methods, and calculated the differences in treatments using odds ratios (OR) and rate ratios with 95% credible intervals (CrI) based on an available-case analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance. We performed also the direct comparisons from RCTs using the same codes and the same technical details. MAIN RESULTS: We included a total of 52 RCTs (4580 participants) in the review. Forty-eight trials (4042 participants) were included in one or more comparisons in the review. The trials that provided the information included people with cirrhosis due to varied aetiologies and those with and without a previous history of bleeding. We included outcomes assessed up to six weeks. All trials were at high risk of bias. A total of 19 interventions were compared in the trials (sclerotherapy, somatostatin analogues, vasopressin analogues, sclerotherapy plus somatostatin analogues, variceal band ligation, balloon tamponade, somatostatin analogues plus variceal band ligation, nitrates plus vasopressin analogues, no active intervention, sclerotherapy plus variceal band ligation, balloon tamponade plus sclerotherapy, balloon tamponade plus somatostatin analogues, balloon tamponade plus vasopressin analogues, variceal band ligation plus vasopressin analogues, balloon tamponade plus nitrates plus vasopressin analogues, balloon tamponade plus variceal band ligation, portocaval shunt, sclerotherapy plus transjugular intrahepatic portosystemic shunt (TIPS), and sclerotherapy plus vasopressin analogues). We have reported the effect estimates for the primary and secondary outcomes when there was evidence of differences between the interventions against the reference treatment of sclerotherapy, but reported the other results of the primary and secondary outcomes versus the reference treatment of sclerotherapy without the effect estimates when there was no evidence of differences in order to provide a concise summary of the results. Overall, 15.8% of the trial participants who received the reference treatment of sclerotherapy (chosen because this was the commonest treatment compared in the trials) died during the follow-up periods, which ranged from three days to six weeks. Based on moderate-certainty evidence, somatostatin analogues alone had higher mortality than sclerotherapy (OR 1.57, 95% CrI 1.04 to 2.41; network estimate; direct comparison: 4 trials; 353 participants) and vasopressin analogues alone had higher mortality than sclerotherapy (OR 1.70, 95% CrI 1.13 to 2.62; network estimate; direct comparison: 2 trials; 438 participants). None of the trials reported health-related quality of life. Based on low-certainty evidence, a higher proportion of people receiving balloon tamponade plus sclerotherapy had more serious adverse events than those receiving only sclerotherapy (OR 4.23, 95% CrI 1.22 to 17.80; direct estimate; 1 RCT; 60 participants). Based on moderate-certainty evidence, people receiving vasopressin analogues alone and those receiving variceal band ligation had fewer adverse events than those receiving only sclerotherapy (rate ratio 0.59, 95% CrI 0.35 to 0.96; network estimate; direct comparison: 1 RCT; 219 participants; and rate ratio 0.40, 95% CrI 0.21 to 0.74; network estimate; direct comparison: 1 RCT; 77 participants; respectively). Based on low-certainty evidence, the proportion of people who developed symptomatic rebleed was smaller in people who received sclerotherapy plus somatostatin analogues than those receiving only sclerotherapy (OR 0.21, 95% CrI 0.03 to 0.94; direct estimate; 1 RCT; 105 participants). The evidence suggests considerable uncertainty about the effect of the interventions in the remaining comparisons where sclerotherapy was the control intervention. AUTHORS' CONCLUSIONS: Based on moderate-certainty evidence, somatostatin analogues alone and vasopressin analogues alone (with supportive therapy) probably result in increased mortality, compared to endoscopic sclerotherapy. Based on moderate-certainty evidence, vasopressin analogues alone and band ligation alone probably result in fewer adverse events compared to endoscopic sclerotherapy. Based on low-certainty evidence, balloon tamponade plus sclerotherapy may result in large increases in serious adverse events compared to sclerotherapy. Based on low-certainty evidence, sclerotherapy plus somatostatin analogues may result in large decreases in symptomatic rebleed compared to sclerotherapy. In the remaining comparisons, the evidence indicates considerable uncertainty about the effects of the interventions, compared to sclerotherapy
    corecore