672 research outputs found

    Edge-Based Compartmental Modeling for Infectious Disease Spread Part III: Disease and Population Structure

    Full text link
    We consider the edge-based compartmental models for infectious disease spread introduced in Part I. These models allow us to consider standard SIR diseases spreading in random populations. In this paper we show how to handle deviations of the disease or population from the simplistic assumptions of Part I. We allow the population to have structure due to effects such as demographic detail or multiple types of risk behavior the disease to have more complicated natural history. We introduce these modifications in the static network context, though it is straightforward to incorporate them into dynamic networks. We also consider serosorting, which requires using the dynamic network models. The basic methods we use to derive these generalizations are widely applicable, and so it is straightforward to introduce many other generalizations not considered here

    Heterogeneities in leishmania infantum infection : using skin parasite burdens to identify highly infectious dogs

    Get PDF
    Background: The relationships between heterogeneities in host infection and infectiousness (transmission to arthropod vectors) can provide important insights for disease management. Here, we quantify heterogeneities in Leishmania infantum parasite numbers in reservoir and non-reservoir host populations, and relate this to their infectiousness during natural infection. Tissue parasite number was evaluated as a potential surrogate marker of host transmission potential. Methods: Parasite numbers were measured by qPCR in bone marrow and ear skin biopsies of 82 dogs and 34 crab-eating foxes collected during a longitudinal study in Amazon Brazil, for which previous data was available on infectiousness (by xenodiagnosis) and severity of infection. Results: Parasite numbers were highly aggregated both between samples and between individuals. In dogs, total parasite abundance and relative numbers in ear skin compared to bone marrow increased with the duration and severity of infection. Infectiousness to the sandfly vector was associated with high parasite numbers; parasite number in skin was the best predictor of being infectious. Crab-eating foxes, which typically present asymptomatic infection and are non-infectious, had parasite numbers comparable to those of non-infectious dogs. Conclusions: Skin parasite number provides an indirect marker of infectiousness, and could allow targeted control particularly of highly infectious dogs

    How Hepatitis D Virus Can Hinder the Control of Hepatitis B Virus

    Get PDF
    BACKGROUND: Hepatitis D (or hepatitis delta) virus is a defective virus that relies on hepatitis B virus (HBV) for transmission; infection with hepatitis D can occur only as coinfection with HBV or superinfection of an existing HBV infection. Because of the bond between the two viruses, control measures for HBV may have also affected the spread of hepatitis D, as evidenced by the decline of hepatitis D in recent years. Since the presence of hepatitis D is associated with suppressed HBV replication and possibly infectivity, it is reasonable to speculate that hepatitis D may facilitate the control of HBV. METHODOLOGY AND PRINCIPAL FINDINGS: We introduced a mathematical model for the transmission of HBV and hepatitis D, where individuals with dual HBV and hepatitis D infection transmit both viruses. We calculated the reproduction numbers of single HBV infections and dual HBV and hepatitis D infections and examined the endemic prevalences of the two viruses. The results show that hepatitis D virus modulates not only the severity of the HBV epidemic, but also the impact of interventions for HBV. Surprisingly we find that the presence of hepatitis D virus may hamper the eradication of HBV. Interventions that aim to reduce the basic reproduction number of HBV below one may not be sufficient to eradicate the virus, as control of HBV depends also on the reproduction numbers of dual infections. CONCLUSIONS AND SIGNIFICANCE: For populations where hepatitis D is endemic, plans for control programs ignoring the presence of hepatitis D may underestimate the HBV epidemic and produce overoptimistic results. The current HBV surveillance should be augmented with monitoring of hepatitis D, in order to improve accuracy of the monitoring and the efficacy of control measures

    Language experience impacts brain activation for spoken and signed language in infancy: Insights from unimodal and bimodal bilinguals

    Get PDF
    Recent neuroimaging studies suggest that monolingual infants activate a left lateralised fronto-temporal brain network in response to spoken language, which is similar to the network involved in processing spoken and signed language in adulthood. However, it is unclear how brain activation to language is influenced by early experience in infancy. To address this question, we present functional near infrared spectroscopy (fNIRS) data from 60 hearing infants (4-to-8 months): 19 monolingual infants exposed to English, 20 unimodal bilingual infants exposed to two spoken languages, and 21 bimodal bilingual infants exposed to English and British Sign Language (BSL). Across all infants, spoken language elicited activation in a bilateral brain network including the inferior frontal and posterior temporal areas, while sign language elicited activation in the right temporo-parietal area. A significant difference in brain lateralisation was observed between groups. Activation in the posterior temporal region was not lateralised in monolinguals and bimodal bilinguals, but right lateralised in response to both language modalities in unimodal bilinguals. This suggests that experience of two spoken languages influences brain activation for sign language when experienced for the first time. Multivariate pattern analyses (MVPA) could classify distributed patterns of activation within the left hemisphere for spoken and signed language in monolinguals (proportion correct = 0.68; p = 0.039) but not in unimodal or bimodal bilinguals. These results suggest that bilingual experience in infancy influences brain activation for language, and that unimodal bilingual experience has greater impact on early brain lateralisation than bimodal bilingual experience

    Autonomous Targeting of Infectious Superspreaders Using Engineered Transmissible Therapies

    Get PDF
    Infectious disease treatments, both pharmaceutical and vaccine, face three universal challenges: the difficulty of targeting treatments to high-risk ‘superspreader’ populations who drive the great majority of disease spread, behavioral barriers in the host population (such as poor compliance and risk disinhibition), and the evolution of pathogen resistance. Here, we describe a proposed intervention that would overcome these challenges by capitalizing upon Therapeutic Interfering Particles (TIPs) that are engineered to replicate conditionally in the presence of the pathogen and spread between individuals — analogous to ‘transmissible immunization’ that occurs with live-attenuated vaccines (but without the potential for reversion to virulence). Building on analyses of HIV field data from sub-Saharan Africa, we construct a multi-scale model, beginning at the single-cell level, to predict the effect of TIPs on individual patient viral loads and ultimately population-level disease prevalence. Our results show that a TIP, engineered with properties based on a recent HIV gene-therapy trial, could stably lower HIV/AIDS prevalence by ∼30-fold within 50 years and could complement current therapies. In contrast, optimistic antiretroviral therapy or vaccination campaigns alone could only lower HIV/AIDS prevalence by <2-fold over 50 years. The TIP's efficacy arises from its exploitation of the same risk factors as the pathogen, allowing it to autonomously penetrate superspreader populations, maintain efficacy despite behavioral disinhibition, and limit viral resistance. While demonstrated here for HIV, the TIP concept could apply broadly to many viral infectious diseases and would represent a new paradigm for disease control, away from pathogen eradication but toward robust disease suppression

    The influenza pandemic preparedness planning tool InfluSim

    Get PDF
    BACKGROUND: Planning public health responses against pandemic influenza relies on predictive models by which the impact of different intervention strategies can be evaluated. Research has to date rather focused on producing predictions for certain localities or under specific conditions, than on designing a publicly available planning tool which can be applied by public health administrations. Here, we provide such a tool which is reproducible by an explicitly formulated structure and designed to operate with an optimal combination of the competing requirements of precision, realism and generality. RESULTS: InfluSim is a deterministic compartment model based on a system of over 1,000 differential equations which extend the classic SEIR model by clinical and demographic parameters relevant for pandemic preparedness planning. It allows for producing time courses and cumulative numbers of influenza cases, outpatient visits, applied antiviral treatment doses, hospitalizations, deaths and work days lost due to sickness, all of which may be associated with economic aspects. The software is programmed in Java, operates platform independent and can be executed on regular desktop computers. CONCLUSION: InfluSim is an online available software which efficiently assists public health planners in designing optimal interventions against pandemic influenza. It can reproduce the infection dynamics of pandemic influenza like complex computer simulations while offering at the same time reproducibility, higher computational performance and better operability

    Dynamics and Control of Diseases in Networks with Community Structure

    Get PDF
    The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde
    corecore