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Abstract

Background: Hepatitis D (or hepatitis delta) virus is a defective virus that relies on hepatitis B virus (HBV) for transmission;
infection with hepatitis D can occur only as coinfection with HBV or superinfection of an existing HBV infection. Because of
the bond between the two viruses, control measures for HBV may have also affected the spread of hepatitis D, as evidenced
by the decline of hepatitis D in recent years. Since the presence of hepatitis D is associated with suppressed HBV replication
and possibly infectivity, it is reasonable to speculate that hepatitis D may facilitate the control of HBV.

Methodology and Principal Findings: We introduced a mathematical model for the transmission of HBV and hepatitis D,
where individuals with dual HBV and hepatitis D infection transmit both viruses. We calculated the reproduction numbers of
single HBV infections and dual HBV and hepatitis D infections and examined the endemic prevalences of the two viruses.
The results show that hepatitis D virus modulates not only the severity of the HBV epidemic, but also the impact of
interventions for HBV. Surprisingly we find that the presence of hepatitis D virus may hamper the eradication of HBV.
Interventions that aim to reduce the basic reproduction number of HBV below one may not be sufficient to eradicate the
virus, as control of HBV depends also on the reproduction numbers of dual infections.

Conclusions and Significance: For populations where hepatitis D is endemic, plans for control programs ignoring the
presence of hepatitis D may underestimate the HBV epidemic and produce overoptimistic results. The current HBV
surveillance should be augmented with monitoring of hepatitis D, in order to improve accuracy of the monitoring and the
efficacy of control measures.
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Introduction

Hepatitis D (or hepatitis delta) virus is a defective virus that

requires helper functions from hepatitis B virus (HBV) for virion

assembly and propagation [1]. Therefore, infection with hepatitis

D can occur only with an associated HBV infection. This can

happen as coinfection (infection with both viruses at the same time)

or superinfection (where an already HBV-infected individual can

be infected with hepatitis D); individuals coinfected or superin-

fected transmit both viruses [2]. Transmission routes for hepatitis

D are similar to those for HBV, namely bloodborne and sexual,

percutaneous, permucosal, and perinatal. Superinfection with

hepatitis D is associated with higher progression rate to chronic

disease and to serious complications [3,2] and may result in

suppression of HBV replication, such that an individual with dual

infection transmits HBV less than an individual infected only with

HBV [4,5].

High prevalences of hepatitis D have been reported among

individuals infected with HBV, but recent reports indicate that

hepatitis D prevalence is on the decline. For instance, in 1986,

dual infection with both viruses was found in 91% of Taiwanese

drug users infected with HBV [6]; this percentage was reduced to

39% in 1997 [6]. In Italy the prevalence of hepatitis D among

HBV-infected individuals declined from 23% in 1987 to 8% in

1997 [7]. It is believed that the reductions in hepatitis D are largely

due to the reductions in HBV [7], as result of the introduction of

HBV vaccination and risk-reduction measures taken against the

spread of HIV: the decreased circulation of HBV decreases the

reservoir needed for the spread of hepatitis D, thus depriving the

defective virus of susceptible hosts to infect. Inversely, since

hepatitis D reduces the infectivity of HBV in those dually infected,

we could speculate that hepatitis D may facilitate the control of

HBV.

To investigate how hepatitis D affects the HBV epidemic, we

use a mathematical model describing the spread of the two viruses

in a population. We show that hepatitis D prevalence is very

sensitive to changes in the infectivity of HBV. We also show that if

hepatitis D virus is highly transmissible, the presence of hepatitis D

can result in more severe HBV epidemic.
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Methods

For the transmission of HBV and hepatitis D, we use a

mathematical model, shown in Fig. 1. Infection with hepatitis D

occurs only together with infection with HBV, as superinfection of

an existing HBV infection or coinfection with both viruses at the

same time. The infection is divided into two stages, a short acute

stage (stage 1) and a long chronic stage (stage 2) with lower

infectivity than the acute stage. Hepatitis D superinfection of an

individual already infected with HBV causes a generally severe

acute hepatitis with short incubation that usually leads to chronic

hepatitis [2]. Therefore, in the model those with acute or

chronic HBV infection who are superinfected with hepatitis D

go again through the acute phase (of dual infection). Let X be

the number of uninfected individuals, Yb1 and Yb2 the numbers

of persons infected only with HBV at stage 1 and 2, respectively,

and Ybd1 and Ybd2 the numbers of those infected with both

viruses. Let N~Xz
P

j~1,2 YbjzYbdj

� �
be the total population

size. The model is described by the following differential

equations:

dX

dt
~B{mX{X GbzFbzFbdð Þ,

dYb1

dt
~X GbzFbð Þ{Yb1Fd{ mzhb1zcbð ÞYb1,

dYb2

dt
~cbYb1{Yb2Fd{ mzhb2ð ÞYb2,

dYbd1

dt
~XFbdz Yb1zYb2ð ÞFd{ mzhbd1zcbdð ÞYbd1,

dYbd2

dt
~cbd Ybd1{ mzhbd2ð ÞYbd2,

ð1Þ

where we define the per capita risks to get

N infected only with HBV from an individual with single HBV:

Gb~
w
N

P
j~1,2

pbjYbj ,

N infected only with HBV from an individual with dual infection:

Fb~
w
N

P
j~1,2

qbj 1{qdj

� �
Ybdj ,

Figure 1. Model for the transmission of hepatitis B virus (HBV) and hepatitis D virus (HDV).
doi:10.1371/journal.pone.0005247.g001
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N superinfected with hepatitis D: Fd~
w
N

P
j~1,2

qdjYbdj ,

N c o i n f e c t e d w i t h b o t h H B V a n d h e p a t i t i s D :

Fbd~
w
N

P
j~1,2

qbjqdjYbdj .

The definitions of the parameters are summarised in Table 1.

The transmission probability of HBV from a person infected only

with HBV is pbj , for stage j = 1, 2. Persons infected with both

viruses in the j-th stage of infection, (i) transmit only HBV with

probability qbj 1{qdj

� �
, (ii) transmit both HBV and hepatitis D

with probability qbjqdj , and (iii) superinfect those infected only with

HBV with probability qdj . Here it is assumed that hepatitis D may

affect the replication of HBV in individuals with dual infection,

such that those dually infected transmit HBV less than individuals

infected only with HBV [4,5]. With i = b for single HBV infection and

i = bd for dual infection, ci is the progression rate from stage 1 to stage

2, hi1 and hi2 are the progression rates out of stage 1 and stage 2

(recovery or extra death due to the disease). Also, Q is the rate of

partner change, m is the per capita removal rate out of the population,

and B is the rate at which new individuals enter the population.

Results

Conditions for the eradication or persistence of the
viruses

To investigate the long-term dynamics of the two viruses, we

performed an equilibrium analysis of the system equations. This

analysis allows us to find the steady state of the system and the

conditions for the eradication or persistence of the viruses. Solving

the model equations (1) with the left-hand side equal to zero, we

find all the possible steady states. The model has three types of

steady states: one where both viruses are eradicated (the disease-

free equilibrium), one where only HBV remains endemic but

hepatitis D is eradicated, and one where the prevalences of both

viruses are non-zero (in the following it will be shown that there

may be more than one point of this third type, with negative or

complex entries).

The reproduction numbers. Further, we found conditions

for the stability of the disease-free equilibrium and of the endemic

equilibria (see Supporting Information, Text S1, for details). These

correspond to conditions for the eradication or the persistence of

the viruses, respectively, and are expressed in terms of the

reproduction numbers. The basic reproduction number of HBV

(denoted Rb) is the number of secondary infections caused by an

individual with HBV throughout his infectious period, if

introduced in a population of uninfecteds. For this model, the

reproduction number of HBV is

Rb~
w

mzhb1zcb

pb1z
cbpb2

mzhb2

� �
:

Similarly, we define the basic reproduction number of dual infections as

the number of secondary dual infections caused by an individual

with dual infection throughout his infectious period, if introduced

in a population of uninfecteds:

Rbd~
w

mzhbd1zcbd

qb1qd1z
cbdqb2qd2

mzhbd2

� �
:

Finally, the invasion reproduction number of dual infections, R̂Rbd , gives

the number of secondary cases of dual infections that an individual

with dual infection can produce throughout his infectious period, if

introduced in a population where HBV is at its endemic

equilibrium (see, e.g., [8]). This number is a threshold that

determines whether dual infection can invade the equilibrium with

only HBV and is given by

R̂Rbd~
Rbd

Rb

z 1{
1

Rb

� �
Rd

(see Text S1 for details of the calculations), where we used the

notation

Table 1. Parameter definitions and values.

Symbol Definition Value Source*

cb Progression rate from acute to carrier for HBV 0.4/person/year [27–29]

hb1 Recovery rate from acute infection with HBV 3.6/person/year [27–29]

hb2 Recovery rate from chronic infection with HBV 0.02/person/year [25,28]

pb1 Transmission risk of HBV from person with HBV only, stage 1 0.46 [25,30]

pb2 Transmission risk of HBV from person with HBV only, stage 2 0.65 pb1 [25,30]

cbd Progression rate from acute to carrier for those dually infected 2/person/year [2,28,31]

hbd1 Recovery rate from acute infection for those dually infected 2/person/year [2,28,31]

hbd2 Recovery rate from chronic infection for those dually infected 0.02/person/year [25,28]

qbj Transmission risk of HBV from person with dual infection, stage j = 1, 2 0.71 pbj [6]

qdj Transmission risk of hepatitis D from person with dual infection, stage j = 1, 2 qbj

n Initial total population size 26000 [32]

m Rate of departing from the population 0.018/year

B Rate at which individuals enter the uninfected population mn

Q Rate of partner change 1.64 partners/year [33,34]

HBV, hepatitis B virus. Dually infected are individuals infected with both hepatitis B and hepatitis D viruses. The transmission risks are expressed as probabilities of
transmission per partnership. The stages 1 and 2 of infection (single HBV and dual) are the acute and the chronic stages, respectively.
*See details in the Supporting Information, text S1.
doi:10.1371/journal.pone.0005247.t001
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Rd~
w

mzhbd1zcbd

qd1z
cbd qd2

mzhbd2

� �
:

Stability of equilibria. If both basic reproduction numbers Rb

and Rbd are less than one, the disease-free equilibrium is locally

asymptotically stable and otherwise it is unstable. If Rbw1 and

R̂Rbdv1, then the endemic equilibrium with only HBV (hepatitis D

is eradicated) is locally asymptotically stable and unstable

otherwise. For the equilibrium with both viruses present, it was

not possible to find analytic conditions for its stability, due to the

complexity of the system. However, we solved numerically the

model equations for several combinations of the parameter values

and the numerical results suggest that the endemic equilibrium

with both HBV and hepatitis D is stable if either Rbd or R̂Rbd is

greater than one (numerical calculations were done using

Mathematica, version 6.1). This implies that even if Rbv1,

HBV may not be eradicated if Rbdw1. (Notice that it is not

possible to have R̂Rbdw1 while both Rb and Rbd are less than one,

because if Rbv1 then R̂RbdvRbd .) Figures 2 and 3 show that

indeed this is possible. The prevalences of the two viruses are

shown in Fig. 2A,C and the reproduction numbers in Fig. 2B,D for

different levels of infectivity during chronic HBV (pb2 is varied

from 0.01 to 0.4). If hepatitis D suppresses HBV replication

(Fig.2A,B), then HBV is eradicated when Rb is reduced below one.

However, if hepatitis D does not suppress HBV replication

(Fig. 2C,D), then reducing Rb below one is not sufficient to

eradicate HBV; the reproduction number of dual infections, Rbd ,

has to be also reduced below one.

Bistability: coexistence of endemic and disease-free

equilibrium. The condition that all reproduction numbers

are below one is necessary, but not sufficient for the eradication of

the viruses, as shown in Fig. 3. Here we solved numerically the

model equations (1) with the left-hand side equal to zero and

Figure 2. The impact of measures changing the infectivity of chronic hepatitis B virus (HBV). The transmission probability of chronic HBV
from individuals with single HBV infection (pb2) was varied from 0 to 0.4. A, B: hepatitis D reduces HBV infectivity by 50% in individuals dually infected
(qb2~0:5pb2); C, D: hepatitis D does not suppress HBV replication (qb2~pb2). Left panels show the total prevalence of HBV (black solid line), the
prevalence of hepatitis D (black dashed line), and the prevalence of HBV in a population without hepatitis D (grey line). Right panels show the
reproduction numbers Rb (solid line), Rbd (dashed line), and R̂Rbd (dotted line).
doi:10.1371/journal.pone.0005247.g002
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calculated all the equilibrium points of the system, varying the

transmission risk from HBV carriers as in Fig. 2C,D (pb2 varied

from 0.01 to 0.4 and qb2~pb2, qb1~pb1). With these values the

system has five equilibrium points: the disease-free equilibrium, an

endemic equilibrium with only HBV, and three solutions with

non-zero prevalences for both HBV and hepatitis D. Of these last

three points, at least one is negative or complex for every value of

pb2 examined here, while two are positive for pb2 between 0.127

and 0.142. In this interval, Rb increases from 0.734 to 0.797, Rbd

from 0.906 to 1, and R̂Rbd is negative. Also, with these values of pb2,

one of the positive points is locally asymptotically stable and the

other unstable, while the disease free equilibrium is also locally

stable (Fig. 3A; the two negative solutions and the complex values

are not shown). This suggests that the model exhibits backward

bifurcation, which means that an endemic and the disease-free

equilibria are both stable in an area where the associated

reproduction number is less than one. When pb2 exceeds 0.142,

Rbd becomes larger than one, and one of the two positive points

becomes negative. Fig. 3B shows HBV prevalence with

pb2~0:128, starting with different initial conditions: with the

Figure 3. Bistability: coexistence of endemic and disease-free equilibria. A. Bifurcation diagram. The two positive equilibria are shown with
black, the disease-free equilibrium with grey; solid lines correspond to locally asymptotically stable equilibria, dotted lines to unstable equilibria.
Results shown here are with pb2 varied from 0.12 to 0.15 (Rbd from 0.86 to 1.05), qb2~pb2 , qb1~pb1 , and the other parameters as in Table 1. B. The
prevalence of hepatitis B virus (HBV) with different initial conditions. In all curves shown, pb2~0:128, qb2~pb2 , qb1~pb1, and the other parameters as
in Table 1. The two positive endemic equilibria are at 9.83 (locally stable) and 4.88 (unstable).
doi:10.1371/journal.pone.0005247.g003
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same parameter values, the system converges to an endemic

equilibrium (HBV prevalence 9.83%) or to the disease-free

equilibrium, depending on the initial HBV prevalence.

How hepatitis D affects the spread of HBV
Variations in HBV prevalence according to hepatitis D

infectivity. The endemic prevalences of HBV and hepatitis D

are shown in Fig. 4A for a range of values of hepatitis D infectivity.

For comparison, we also calculated the endemic prevalence of

HBV for a hypothetical scenario where hepatitis D has not been

introduced in the population and only HBV is circulating. The

parameter values used relate to sexual transmission among men

having sex with men (see Table 1 and Text S1). If the

transmissibility of hepatitis D is very low, hepatitis D cannot be

sustained in the population and only HBV remains endemic. If

hepatitis D infectivity is sufficiently high, then both viruses remain

endemic and the prevalence of hepatitis D increases as its

infectivity increases. Comparing an epidemic where only HBV is

circulating (grey dotted line) with an epidemic where both HBV

and hepatitis D are circulating (black lines), and keeping the

properties of HBV otherwise equal, the following observations can

be made:

– If hepatitis D infectivity is not very high, the presence of

hepatitis D results in lower endemic HBV prevalence. This can

be understood intuitively, because now many individuals have

dual infection and transmit HBV less than individuals with

single HBV, resulting in less prevalent HBV infections.

– If hepatitis D infectivity is high, then hepatitis D spreads very

fast and, hence, despite the lower transmissibility of HBV in

those dually infected, those with single HBV infection are

superinfected sooner rather than later with hepatitis D and,

Figure 4. How the characteristics of hepatitis D affect the endemic prevalences of hepatitis B (HBV) and hepatitis D. The plot shows
the prevalences of HBV (solid line) and hepatitis D (dashed line) in a population where both viruses are circulating and the prevalence of HBV in a
population where only HBV is circulating (grey dotted line). A. The transmission probability of acute hepatitis D (qd1) was varied from 0 to 0.8 and
that of chronic hepatitis D (qd2)was 0.65 times that of acute hepatitis D. B. The percentage change in HBV infectivity in those dually infected
(compared to those with single HBV infection, 100 � qbj{pbj

� ��
pbj , for j = 1, 2) was varied from 2100% to +50%. C, D. As in plots A, B, but assuming

that HBV carriers who are superinfected with hepatitis D do not re-enter acute HBV (using equations (2) instead of the last two equations of system
(1)).
doi:10.1371/journal.pone.0005247.g004
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hence, frequently during acute infection. Since the probability

of entering the chronic phase for those with acute dual

infection is five times higher than for those with acute single

infections, this results in higher endemic HBV prevalence and,

thus, in a more severe HBV epidemic.

Suppression of HBV replication due to hepatitis D. The

above results indicate that the suppression of HBV replication and

transmissibility due to hepatitis D infection in those dually infected

has an important role in the spread of the two viruses. To

investigate this further, the endemic prevalences of HBV and

hepatitis D were again calculated, but now for different levels of

suppression of HBV replication (Fig. 4B). If hepatitis D reduces

sufficiently the infectivity of HBV in those dually infected, the

presence of hepatitis D results in lower endemic HBV prevalence

and hence makes the HBV epidemic less severe. Otherwise, HBV

prevalence is higher than in the absence of hepatitis D, which

means that hepatitis D makes the HBV epidemic more severe.

Hepatitis D superinfection does not lead to acute

HBV. Further we investigated the assumption that HBV

carriers who are superinfected with hepatitis D go again through

acute HBV infection. Fig. 4C,D show the endemic prevalences of

HBV and hepatitis D, as in Fig. 4A,B, but assuming that HBV

carriers who are superinfected with hepatitis D go directly to

chronic dual infection. In this case, the last two of the model

equations (1) are substituted by the following equations:

dYbd1

dt
~XFbdzYb1Fd{ mzhbd1zcbdð ÞYbd1,

dYbd2

dt
~cbdYbd1{ mzhbd2ð ÞYbd2zYb2Fd ,

ð2Þ

This modification has two contradicting effects: (i) those

superinfected with hepatitis D are in total less infectious (because

they do not go through the acute phase); hence we would expect

less transmission of HBV and of hepatitis D; (ii) those

superinfected with hepatitis D now progress to chronic infection,

while only a fraction of them will progress from acute to chronic, if

superinfection leads to acute infection first; therefore we would

expect higher prevalence and higher transmission of HBV and of

hepatitis D. Fig. 4 shows that if carriers who are superinfected do

not re-enter the acute stage, the prevalence of hepatitis D is higher

and the virus remains endemic with lower infectivity. Also, the

prevalence of HBV is higher, even with lower hepatitis D

infectivity, since all superinfections become chronic infections

and there are no infections ‘‘lost’’ due to recovery from acute

infection, as explained also in Fig. 4A. This effect of hepatitis D on

HBV is diminished, resulting in lower HBV prevalence, only if

hepatitis D suppresses HBV infectivity too much in those dually

infected (for instance, more than 65% with the parameters

examined here), since then they can cause only too few new

infections. Therefore, the assumption that hepatitis D

superinfection causes HBV carriers to go again through the

acute HBV stage results in a milder epidemic than if they would

directly progress to chronic dual infection.

The impact of control measures for HBV
Here we examine the effect of control measures, such as

treatment, reducing the transmissibility of chronic HBV equally in

those with single (pb2) and those with dual infections (qb2). Since

antiviral agents have no effect on hepatitis D [9], the model

accounts for no reduction in infectivity of hepatitis D due to HBV

treatment. The intervention was introduced when the epidemic

had stabilised at the endemic equilibrium with both viruses

prevalent (with the parameters as shown in Table 1, where HBV

prevalence is slightly higher than what it would have been in the

absence of hepatitis D). By reducing the infectivity of HBV alone,

reductions in both HBV and hepatitis D can be achieved

(Fig. 5A,B). With the highest reductions in infectivity shown here

(40% and 50%), both viruses are eliminated; hepatitis D is

eliminated much earlier than HBV. For completeness, we

repeated the plots in Fig. 5A,B, assuming that treatment reduces

also the infectivity of hepatitis D (Fig. 5C,D). In this case, the

prevalence of hepatitis D declines much faster and the virus is

eradicated much earlier or it stabilizes at a lower endemic

prevalence (in the cases where it remains endemic). Also, the

prevalence of HBV is slightly lower.

Figure 2 shows how much HBV infectivity should be reduced in

order to eradicate HBV and hepatitis D. If hepatitis D suppresses

HBV replication (Fig. 2A,B), the control of HBV is not affected by

the presence of hepatitis D: HBV is eradicated with the same

reduction in HBV infectivity in both epidemics (with and without

hepatitis D). However, the resulting endemic prevalence is lower

than that in an epidemic without hepatitis D. In this case, hepatitis

D helps limiting the spread of HBV and enhances the impact of

the intervention. On the other hand, if HBV replication is not

suppressed by hepatitis D (Fig. 2C,D), higher reductions in HBV

infectivity are required to eradicate the viruses. Also, the resulting

endemic prevalence is higher than that in an epidemic without

hepatitis D. In this case, the presence of hepatitis D makes the

control of HBV more difficult and makes the interventions less

effective.

In many countries, surveillance of hepatitis D is limited and

therefore the actual prevalence of hepatitis D in the population is

unknown. For that reason, we examined the impact of a specific

intervention for HBV under different assumptions about the

‘‘unknown’’ prevalence of hepatitis D when the intervention was

introduced, but keeping the total prevalence of HBV constant

(Fig. 6). The intervention examined here is the reduction of the

transmission probabilities of chronic HBV by 20% for those with

single or dual infection. With higher hepatitis D prevalence at the

time the intervention is introduced, HBV prevalence is reduced

more, which means that in the beginning the intervention has a

higher impact. This can be explained by the fact that for those

with single HBV infection, infectivity is reduced by 20% due to

treatment, while for those with dual infection, it is reduced by 20%

on top of the 30% reduction due to suppression of HBV

replication. Therefore, the more individuals with dual infection

are present in the beginning (meaning, the higher the initial

hepatitis D prevalence), the higher the total reduction in HBV

infectivity and consequently the lower the prevalence of HBV. In

time, however, as hepatitis D prevalence declines due to treatment,

the effect of HBV replication also declines, and HBV prevalence is

finally lower without hepatitis D than in the presence of hepatitis

D.

Discussion

The results presented in this study indicate that the presence of

hepatitis D may have a strong impact on the spread of HBV.

Hepatitis D virus modulates both the severity of the HBV

epidemic and the impact of interventions that are aimed at

reducing HBV incidence. The presence of hepatitis D virus may

hamper the eradication of HBV. Interventions that aim to reduce

the basic reproduction number of HBV below one may not be

sufficient to eradicate the virus, as control of HBV depends also on

the reproduction numbers of dual infections. This implies that for

populations where hepatitis D is endemic, plans for control

Hepatitis B and Hepatitis D
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programs ignoring the presence of hepatitis D may underestimate

the HBV epidemic and produce overoptimistic results.

The impact of hepatitis D can be explained as follows. At the

individual level, hepatitis D affects HBV infection in two ways:

HBV transmission rate is lower and the chance to progress from

acute to chronic infection (and not recover) is higher for those with

dual infection than for those with single HBV infection. Because of

this, hepatitis D superinfection affects the prevalence of HBV at

the population level. If hepatitis D infectivity is high, then hepatitis

D superinfection will usually occur early during acute HBV

infection; that increases the chance to progress to chronic infection

and hence the prevalence of HBV. If hepatitis D infectivity is low,

then hepatitis D superinfection will mostly occur during chronic

HBV infection; that reduces HBV infectivity and hence HBV

prevalence. The precise mechanism depends on how much HBV

infectivity is reduced by hepatitis D, how much the progression rate to

chronic infection is increased by hepatitis D, and by other properties

of the two viruses. Our results, for instance, show that if hepatitis D

superinfection does not result in re-entering the acute stage, higher

HBV prevalence will be observed even with low hepatitis D

transmission rates. Unfortunately, knowledge about the properties

of dual infection is limited, as there are few studies on hepatitis D. The

use of a mathematical model allows us to incorporate existing

information and obtain realistic parameter values from the literature;

the uncertainty analysis of the model further shows how the outcomes

depend on the specific parameter values.

This study follows a considerable amount of research on the

epidemic dynamics of interacting pathogen strains (see, for

instance, [10–12]) and interacting pathogens (see, e.g., [13,14]).

Our results relate to those of other co-infections, for instance with

HIV and tuberculosis; the observations show that incidence of

tuberculosis has increased due to increased prevalence of HIV

infection [15,16]. The mechanism is that HIV impairs host

immunity and substantially alters the infection dynamics of

tuberculosis. Modeling studies have shown synergistic effects and

that antiviral treatment for HIV is necessary for the reduction of

Figure 5. How antiviral treatment reduces the prevalences of hepatitis B (HBV) and hepatitis D in time. A, B. Treatment reduces only
the infectivity of HBV. It is introduced at time 0, after the epidemic had stabilised at the endemic equilibrium with both viruses present, which is
shown with a straight grey line. The infectivity of chronic HBV is reduced by 20% (dotted lines), 30% (dashed-dotted lines), 40% (dashed lines), or 50%
(solid lines). Prevalences are shown as percentages of total population. C, D. As in plots A, B, but assuming that treatment reduces also the infectivity
of hepatitis D, by the same percentage as that of HBV.
doi:10.1371/journal.pone.0005247.g005
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tuberculosis prevalence [17,15]. However, the system studied here

is different in that hepatitis D is not a true pathogenic virus but

rather a subviral agent incapable of disseminating without help

from HBV. The requirement for a helper virus is a rare property

among human viruses. Only one other helper-dependent infec-

tious agent of humans is known (the adeno-associated virus, a

parvovirus that requires adenovirus as helper [18]). Although the

dynamics of a defective virus with a helper virus are reminiscent of

those of synergistic co-infection, they are essentially different in

that, whereas endemic equilibria of both tuberculosis without HIV

and HIV without tuberculosis are possible under specific

conditions, biology dictates that an endemic equilibrium with

only the defective virus but not the helper virus is impossible under

any circumstance.

The work presented here can be broadened towards several

interesting research directions. For instance, the model can be

extended to account for the effect of HBV vaccination. As yet,

there are no effective treatments specific for the hepatitis D

component of concurrent HBV and hepatitis D infections.

However, vaccination against HBV provides direct protection

against hepatitis D virus infection as well. In the recent years, HBV

vaccination has been introduced in many countries, resulting in

considerable reductions in HBV prevalence and incidence.

Moreover, vaccination reduces HBV transmission and, hence,

the number of those infected with HBV. As hepatitis D can be

transmitted only in the presence of HBV, the hepatitis D

prevalence will also decline. Our results for the treatment of

HBV infections lead us to expect that vaccination may also have a

large impact on the prevalence of hepatitis D. This expectation is

confirmed by observations in countries where HBV vaccination is

introduced and where hepatitis D is prevalent. For instance, in

Taiwan the national HBV vaccination of infants was introduced in

1984; 15 years later, the HBsAg carrier rate in children had

decreased from 9.8% to 0.7% [6]. The prevalence of hepatitis D

among Taiwanese drug users infected with HBV, the most

important risk group for hepatitis D transmission, decreased from

91% in 1986 to 39% in 1997 [6].

Further, it would be also interesting to account for stochasticity

in this framework. Several studies have shown that including

chance in the model can change its long-term behaviour, for

instance ‘‘fit’’ pathogens that remain endemic in the deterministic

model, may go extinct in the stochastic due to chance fading out

[19,20]. In models of multiple pathogen strains, it has been shown

that in cases where the deterministic model predicts the

coexistence of multiple strains, the stochastic model predicts the

extinction of one or all strains [21,22]. It is possible that a

stochastic analysis of the dynamics of HBV and hepatitis D would

also alter the results about the coexistence of the two viruses; this is

an area where future research should definitely receive more

attention.

An important direction for further work would be to include

spatial structure in the model. The assumption of proportionate

mixing in a large population ignores the clustering of individuals at

high risk. As both HBV and hepatitis D spread through the same

transmission routes, it is likely that there are clusters of individuals

with a high prevalence of HBV, where hepatitis D can disappear

by chance. To study the dynamics of such a system, we require a

meta-population model or a network model. It has been shown

that the dynamics of infection in such a network may differ, for

instance having less opportunity for persistence of the disease, or

greater possibility for extinction and limit cycles (see, e.g. [23,24]).

Our analysis presents a mean-field model of such a more complex

model and should be understood as a first step towards

understanding the complicated dynamics of interaction between

hepatitis D and HBV infection dynamics.

Another issue that could be investigated in further research is

the transmission of the two viruses via other contacts. In several

countries injecting drugs and household contacts are also

important routes of transmission of both HBV and hepatitis D

[6,7,25]. It is important to examine whether (and how) the

dynamics of the two viruses differ according to the route of

transmission and the risk groups in which they are prevalent. Also,

a number of studies have indicated that certain properties of

hepatitis D infection may be different in those superinfected with

hepatitis D compared to those who were infected with both viruses

at the same time (for instance, different progression rates [2]). The

model could be adapted to account for such differences, if those

dually infected are divided into two types, those superinfected and

those coinfected. Finally, the model can be extended to include a

separate subgroup of the population for those recovering from the

infection and becoming immune.

Finally, certain limitations of this modeling study have to be

mentioned. First, because of the limited knowledge on the

biological properties of hepatitis D and on how HBV infection is

changed in those dually infected, several assumptions were made

in the model structure or the parameter values used in the

numerical results. We tried to compensate the lack of data by

performing uncertainty analyses and examining different scenar-

ios, covering as much as possible of all realistic possibilities.

Another consideration is that we did not account for variation in

some progression rates of HBV according to age. This was done

because these rates are relatively stable for adults during the years

of sexual activity examined in the numerical results [26,27].

Therefore, it is expected that stratifying by age is not necessary and

would not affect considerably the results. Finally, in the present

study it was assumed that individuals recovering from HBV or

hepatitis D infection and those developing severe complications

are removed from the population and do not contribute further to

the transmission of the two viruses. Actually, those recovering

become immune, remain in the population, and may have

contacts with those not immune. Therefore, the total population

size is underestimated in the model and the incidence is

overestimated. However, this holds for both viruses and we expect

that it does not considerably affect the balance between the two

Figure 6. The initial impact of treatment on the prevalence of
hepatitis B (HBV). Antiviral treatment reduces infectivity of chronic
HBV by 20%. The total prevalence of HBV is shown as percentage of the
population. When the intervention is introduced (year 0), 36% of the
population is infected with HBV; among them, the percentage
coinfected with hepatitis D is 30% (solid line), 20% (dashed line), 10%
(dashed-dotted line), or 0% (dotted line).
doi:10.1371/journal.pone.0005247.g006
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viruses or their interaction. This simplification allows us to sketch

the expected qualitative dynamic behavior and the potential

impact that hepatitis D has on the spread and control of HBV.

To our knowledge, this is the first attempt to model the

dynamics of hepatitis D and to investigate the interplay between

HBV and hepatitis D. On the empirical side, there is very little

known about the epidemiological properties of hepatitis D, and

given its importance in affecting the HBV epidemic, more

information is needed on basic epidemiological characteristics of

hepatitis D infection and the time course of infection with HBV

and a concurrent hepatitis D infection. On the theoretical side,

understanding the complex dynamics of the interaction between a

defective virus and its helper virus would be much helped by

additional modeling approaches that incorporate the role of

demographic stochasticity and network models. Our findings

indicate that hepatitis D plays an important role in the spread and

control of HBV. Investigating the transmission dynamics of HBV

should account for the presence of hepatitis D in a population.

Augmenting the existing HBV monitoring programs with

monitoring of hepatitis D could boost the accuracy of the

surveillance of HBV prevalence and of the efficacy of control

programs.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0005247.s001 (0.04 MB

PDF)

Acknowledgments

The authors would like to thank the referees for constructive comments

and suggestions that improved the manuscript.

Author Contributions

Conceived and designed the experiments: MX BBR JH JW. Performed the

experiments: MX. Analyzed the data: MX JW. Contributed reagents/

materials/analysis tools: JH. Wrote the paper: MX BBR JW.

References

1. Sureau C, Guerra B, Lanford R (1993) Role of the large hepatitis B virus
envelope protein in infectivity of the hepatitis delta virion. J Virol 67: 366–72.

2. WHO (2001) Hepatitis Delta. Available at: http://www.who.int/csr/disease/

hepatitis/ HepatitisD-whocdscsrncs2001-1.pdf. Accessed 2008 June 4.
3. Polish L, Gallagher M, Fields H, Hadler S (1993) Delta hepatitis: molecular

biology and clinical and epidemiological features. Clin Microb Rev 6: 211–29.
4. Jardi R, Rodriguez F, Buti M, Costa X, Cotrina M, et al. (2001) Role of hepatitis

B, C, and D viruses in dual and triple infection: influence of viral genotypes and

hepatitis B precore and basal core promoter mutations on viral replicative
interference. Hepatology 34: 404–10.

5. Inoue J, Takahashi M, Nishizawa T, Narantuya L, Sakuma M, et al. (2005) High
prevalence of hepatitis Delta virus infection detectable by enzyme immunoassay

among apparently healthy individuals in Mongolia. J Med Virol 76: 333–340.
6. Kao J, Chen P, Lai M, Chen D (2002) Hepatitis D virus genotypes in

intravenous drug users in Taiwan: decreasing prevalence and lack of correlation

with hepatitis B virus genotypes. J Clin Microb 40: 3047–3049.
7. Gaeta G, Stroffolini T, Chiaramonte M, Ascione T, Stornaiuolo G, et al. (2002)

Chronic hepatitis D: a vanishing disease? An italian multicenter study.
Hepatology 32: 824–827.

8. Martcheva M, Pilyugin S, Holt R (2007) Subthreshold and superthreshold

coexistence of pathogen variants: the impact of host age-structure. Math Biosci
207: 58–77.

9. Niro G, Rosina F, Rizzeto M (2005) Treatment of hepatitis D. J Viral Hepat 12: 2–9.
10. May R, Nowak M (1994) Superinfection, metapopulation dynamics, and the

evolution of diversity. J Theor Biol 170: 95–114.
11. May R, Nowak M (1995) Coinfection and the evolution of parasite virulence.

Proc R Soc London B 261: 209–215.

12. Ferguson N, Anderson R, Gupta S (1999) The effect of antibody-dependent
enhancement on the transmission dynamics and persistence of multiple strain

pathogens. Proc Natl Acad Sci USA 96: 790–794.
13. Lloyd-Smith J, Poss M, Grenfell B (2008) HIV-1/parasite co-infection and the

emergence of new parasite strains. Parasitology 135: 795–806.

14. Abu-Raddad L, Patnaik P, Kublin J (2006) Dual infection with HIV and malaria
fuels the spread of both diseases in sub-Saharan Africa. Science 314: 1603–1606.

15. Currie C, Williams B, Cheng R, Dye C (2003) Tuberculosis epidemics driven by
HIV: is prevention better than cure? AIDS 17: 2501–2508.

16. Corbett E, Watt C, Walker N, Maher D, Williams B, Raviglione M, Dye C

(2003) The growing burden of tuberculosis. Global trends and interactions with
the HIV epidemic. Arch Intern Med 163: 1009–1021.

17. Williams B, Granich R, Chauhan L, Dharmshaktu N, Dye C (2005) The impact
of HIV/AIDS on the control of tuberculosis in India. PNAS 102: 9619–9624.

18. Myers M, Laughlin C, Jay F, Carter B (1980) Adenovirus helper function for
growth of adeno-associated virus: effect of temperature-sensitive mutations in

adenovirus early gene region 2. J Virol 35: 65–75.
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