58 research outputs found

    A microwave kinetic inductance camera for sub/millimeter astrophysics

    Get PDF
    The MKID Camera is a millimeter/submillimeter instrument being built for astronomical observations from the Caltech Submillimeter Observatory. It utilizes microwave kinetic inductance detectors, which are rapidly achieving near-BLIP sensitivity for ground-based observations, and a software-defined radio readout technique for elegant multiplexing of a large number of detectors. The Camera will have 592 pixels distributed over 16 tiles in the focal plane, with four colors per pixel matched to the 750 μm, 850 μm, and 1.0 - 1.5 mm (split in two) atmospheric transmission windows. As a precursor to building the full-up camera and to enable ongoing detector testing, we have built a DemoCam comprised of a 16-pixel MKID array with which we have made preliminary astronomical observations. These observations demonstrate the viability of MKIDs for submillimeter astronomy, provide insight into systematic design issues that must be considered for MKID-based instruments, and they are the first astronomical observations with antenna-coupled superconducting detectors. In this paper, we describe the basic systems and specifications of the MKID Camera, we describe our DemoCam observations, and we comment on the status of submillimeter MKID sensitivities

    Color, 3D simulated images with shapelets

    Full text link
    We present a method to simulate color, 3-dimensional images taken with a space-based observatory by building off of the established shapelets pipeline. The simulated galaxies exhibit complex morphologies, which are realistically correlated between, and include, known redshifts. The simulations are created using galaxies from the 4 optical and near-infrared bands (B, V, i and z) of the Hubble Ultra Deep Field (UDF) as a basis set to model morphologies and redshift. We include observational effects such as sky noise and pixelization and can add astronomical signals of interest such as weak gravitational lensing. The realism of the simulations is demonstrated by comparing their morphologies to the original UDF galaxies and by comparing their distribution of ellipticities as a function of redshift and magnitude to wider HST COSMOS data. These simulations have already been useful for calibrating multicolor image analysis techniques and for better optimizing the design of proposed space telescopes.Comment: 14 pages, 15 figures, accepted to Astroparticle Physic

    A microwave kinetic inductance camera for sub/millimeter astrophysics

    Get PDF
    The MKID Camera is a millimeter/submillimeter instrument being built for astronomical observations from the Caltech Submillimeter Observatory. It utilizes microwave kinetic inductance detectors, which are rapidly achieving near-BLIP sensitivity for ground-based observations, and a software-defined radio readout technique for elegant multiplexing of a large number of detectors. The Camera will have 592 pixels distributed over 16 tiles in the focal plane, with four colors per pixel matched to the 750 μm, 850 μm, and 1.0 - 1.5 mm (split in two) atmospheric transmission windows. As a precursor to building the full-up camera and to enable ongoing detector testing, we have built a DemoCam comprised of a 16-pixel MKID array with which we have made preliminary astronomical observations. These observations demonstrate the viability of MKIDs for submillimeter astronomy, provide insight into systematic design issues that must be considered for MKID-based instruments, and they are the first astronomical observations with antenna-coupled superconducting detectors. In this paper, we describe the basic systems and specifications of the MKID Camera, we describe our DemoCam observations, and we comment on the status of submillimeter MKID sensitivities

    Globalization and the Transmission of Social Values: The Case of Tolerance

    Full text link

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Resiliency, Control, Enjoyment and Physical Activity in African American High School Students

    No full text
    Resiliency, Control, Enjoyment and Physical Activity in African American High School StudentsThe purpose of this study was to explain physical activity (PA) using Block and Block's (2006a) ego-resiliency and ego-control theory along with measures of self-control and PA enjoyment. One-hundred and seventy-seven African American high school students from a large Midwest inner city participated. In general, cluster analyses provided support for the importance of ego-resiliency and PA enjoyment as there were strongly affiliated with differential amounts of PA. Ego-control and self-control were also important in cluster formation but related to PA in somewhat unexpected ways.</jats:p

    Astronomical Image Simulation for Telescope and Survey Development

    Get PDF
    We present the simage software suite for the simulation of artificial extragalactic images, based empirically around real observations of the Hubble Ultra Deep Field. The simulations reproduce galaxies with realistic and complex morphologies via the modeling of UDF galaxies as shapelets. Images can be created in the B, V, i and z bands for both space- and ground-based telescopes and instruments. The simulated images can be produced for any required field size, exposure time, PSF, telescope mirror size, pixel resolution, field star density, and a variety of detector noise sources. It has the capability to create images with either a predetermined number of galaxies, or one calibrated to the number counts of preexisting data sets such as the HST COSMOS survey. In addition, simple options are included to add a known weak gravitational lensing signal (both shear and flexion) to the simulated images. The software is available in IDL and can be freely downloaded for scientific, developmental, and teaching purposes
    corecore