118 research outputs found

    A dicing free SOI process for MEMS devices

    No full text
    This paper presents a full wafer, dicing free, dry release process for MEMS silicon-on-insulator (SOI) sensors and actuators. The developed process is particularly useful for inertial sensors that benefit from a large proof mass, for example accelerometers and gyroscopes. It involves consecutive front and backside deep reactive ion etching (DRIE) of the substrate to define the device features, release holes, and trenches. This is followed by hydrofluoric acid vapor phase etching (HF VPE) to release the proof mass and the handle wafer underneath to allow vertical displacements of the proof mass. The release process also allows the devices to be detached from each other and the substrate without the need of an extra dicing step that may damage the delicate device features or create debris. In the work described here, the process is demonstrated for the full wafer release of a high performance accelerometer with a large proof mass measuring 4 × 7 mm2. The sensor was successfully fabricated with a yield of over 95

    Relativistic Expansion of Magnetic Loops at the Self-similar Stage II: Magnetized outflows interacting with the ambient plasma

    Full text link
    We obtained self-similar solutions of relativistically expanding magnetic loops by assuming axisymmetry and a purely radial flow. The stellar rotation and the magnetic fields in the ambient plasma are neglected. We include the Newtonian gravity of the central star. These solutions are extended from those in our previous work (Takahashi, Asano, & Matsumoto 2009) by taking into account discontinuities such as the contact discontinuity and the shock. The global plasma flow consists of three regions, the outflowing region, the post shocked region, and the ambient plasma. They are divided by two discontinuities. The solutions are characterized by the radial velocity, which plays a role of the self-similar parameter in our solutions. The shock Lorentz factor gradually increases with radius. It can be approximately represented by the power of radius with the power law index of 0.25. We also carried out magnetohydrodynamic simulations of the evolution of magnetic loops to study the stability and the generality of our analytical solutions. We used the analytical solutions as the initial condition and the inner boundary conditions. We confirmed that our solutions are stable over the simulation time and that numerical results nicely recover the analytical solutions. We then carried out numerical simulations to study the generality of our solutions by changing the power law index \delta of the ambient plasma density \rho_0 \propto r^{-\delta}. We alter the power law index \delta from 3.5 in the analytical solutions. The analytical solutions are used as the initial conditions inside the shock in all simulations. We observed that the shock Lorentz factor increases with time when \delta is larger than 3, while it decreases with time when \delta is smaller than 3. The shock Lorentz factor is proportional to t^{(\delta-3)/2}. These results are consistent with the analytical studies by Shapiro (1979).Comment: 19 pages, 13 figures, Accepted for publication in MNRA

    Assessing a Mercury Affected Area from Small-scale Gold Mining in Poboya, Central Sulawesi, Indonesia

    Get PDF
    Abstract Poboya, Central Sulawesi is one of the primary sites used for small-scale gold mining activities in Indonesia. Poboya consumes 200-500 kg of mercury/day by amalgamation. Palu, the capital city of Central Sulawesi, is a city with a population of 0.35 million people and located around 11 km away from the edge of a small-scale gold mining area in Poboya. Fifteen samples of upper layer soil and fifteen samples of plant (Calotropis gigantean) were taken along the road that connects Poboya to Palu, at every 500 m. Mercury concentration in the soil samples showed a gradual decrement as the distance from Poboya became greater. The plant samples also revealed a similar trend to the soil samples. The highest concentration of mercury in the soil was found at Poboya-i.e. 17.62 ng/mg, and the concentration of mercury in Calotropis gigantean grown at Poboya was 6.5 ng/mg. Based on the soil samples and pollution index, the data showed that the research area had heavy pollution levels up to 4 km. Moreover, the transfer factor was in the range of 0.13-3.44 at distances of 0-4 km, respectively

    Rescue from Stx2-Producing E. coli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 × 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 × 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection

    Rescue from Stx2-Producing E. coli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 × 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 × 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection

    Separate analysis of human papillomavirus E6 and E7 messenger RNAs to predict cervical neoplasia progression

    Get PDF
    A few studies previously suggested that human papillomavirus (HPV) E6 messenger RNA (mRNA) may exist uniformly in all grades of cervical intraepithelial neoplasia (CIN), whereas the detection rate of E7 mRNA may increase with disease progression from low-grade CIN to invasive carcinoma. The aim of this study was to clarify the different roles of E6 and E7 mRNAs in cervical carcinogenesis. The presence of each E6 and E7 mRNA was analyzed in 171 patients with pathologically-diagnosed CIN or cervical carcinoma. We utilized a RT-PCR assay based on consensus primers which could detect E6 mRNA (full-length E6/E7 transcript) and E7 mRNAs (spliced E6*/E7 transcripts) separately for various HPV types. E7 mRNAs were detected in 6% of CIN1, 12% of CIN2, 24% of CIN3, and 54% of cervical carcinoma. The presence of E7 mRNAs was significantly associated with progression from low-grade CIN to invasive carcinoma in contrast with E6 mRNA or high-risk HPV (HR-HPV) DNA (p = 0.00011, 0.80 and 0.54). The presence of both E6 and E7 mRNAs was significantly associated with HPV16/18 DNA but not with HR-HPV DNA (p = 0.0079 and 0.21), while the presence of E6 mRNA was significantly associated with HR-HPV DNA but not with HPV16/18 DNA (p = 0.036 and 0.089). The presence of both E6 and E7 mRNAs showed high specificity and low sensitivity (100% and 19%) for detecting CIN2+ by contrast with the positivity for HR-HPV DNA showing low specificity and high sensitivity (19% and 89%). The positive predictive value for detecting CIN2+ was even higher by the presence of both E6 and E7 mRNAs than by the positivity for HR-HPV DNA (100% vs. 91%). In 31 patients followed up for CIN1-2, the presence of both E6 and E7 mRNAs showed significant association with the occurrence of upgraded abnormal cytology in contrast with E6 mRNA, HR-HPV DNA, or HPV16/18 DNA (p = 0.034, 0.73, 0.53, and 0.72). Our findings support previous studies according to which E7 mRNA is more closely involved in cervical carcinogenesis than E6 mRNA. Moreover, the separate analysis of E6 and E7 mRNAs may be more useful than HR-HPV DNA test for detecting CIN2+ precisely and predicting disease progression. Further accumulation of evidence is warranted to validate our findings

    Nivolumab Versus Gemcitabine or Pegylated Liposomal Doxorubicin for Patients With Platinum-Resistant Ovarian Cancer: Open-Label, Randomized Trial in Japan (NINJA)

    Get PDF
    PURPOSE: This phase III, multicenter, randomized, open-label study investigated the efficacy and safety of nivolumab versus chemotherapy (gemcitabine [GEM] or pegylated liposomal doxorubicin [PLD]) in patients with platinum-resistant ovarian cancer. MATERIALS AND METHODS: Eligible patients had platinum-resistant epithelial ovarian cancer, received ≤ 1 regimen after diagnosis of resistance, and had an Eastern Cooperative Oncology Group performance score of ≤ 1. Patients were randomly assigned 1:1 to nivolumab (240 mg once every 2 weeks [as one cycle]) or chemotherapy (GEM 1000 mg/m2 for 30 minutes [once on days 1, 8, and 15] followed by a week's rest [as one cycle], or PLD 50 mg/m2 once every 4 weeks [as one cycle]). The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), overall response rate, duration of response, and safety. RESULTS: Patients (n = 316) were randomly assigned to nivolumab (n = 157) or GEM or PLD (n = 159) between October 2015 and December 2017. Median OS was 10.1 (95% CI, 8.3 to 14.1) and 12.1 (95% CI, 9.3 to 15.3) months with nivolumab and GEM or PLD, respectively (hazard ratio, 1.0; 95% CI, 0.8 to 1.3; P = .808). Median PFS was 2.0 (95% CI, 1.9 to 2.2) and 3.8 (95% CI, 3.6 to 4.2) months with nivolumab and GEM or PLD, respectively (hazard ratio, 1.5; 95% CI, 1.2 to 1.9; P = .002). There was no statistical difference in overall response rate between groups (7.6% v 13.2%; odds ratio, 0.6; 95% CI, 0.2 to 1.3; P = .191). Median duration of response was numerically longer with nivolumab than GEM or PLD (18.7 v 7.4 months). Fewer treatment-related adverse events were observed with nivolumab versus GEM or PLD (61.5% v 98.1%), with no additional or new safety risks. CONCLUSION: Although well-tolerated, nivolumab did not improve OS and showed worse PFS compared with GEM or PLD in patients with platinum-resistant ovarian cancer

    Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings

    Get PDF
    Herein, we have reviewed the role of glutamate, the major excitatory neurotransmitter in the brain, in a number of neurochemical, -physiological, and -behavioral processes mediating the development of alcohol dependence. The findings discussed include results from both preclinical as well as neuroimaging and postmortem clinical studies. Expression levels for a number of glutamate-associated genes and/or proteins are modulated by alcohol abuse and dependence. These changes in expression include metabotropic receptors and ionotropic receptor subunits as well as different glutamate transporters. Moreover, these changes in gene expression parallel the pharmacologic manipulation of these same receptors and transporters. Some of these gene expression changes may have predated alcohol abuse and dependence because a number of glutamate-associated polymorphisms are related to a genetic predisposition to develop alcohol dependence. Other glutamate-associated polymorphisms are linked to age at the onset of alcohol-dependence and initial level of response/sensitivity to alcohol. Finally, findings of innate and/or ethanol-induced glutamate-associated gene expression differences/changes observed in a genetic animal model of alcoholism, the P rat, are summarized. Overall, the existing literature indicates that changes in glutamate receptors, transporters, enzymes, and scaffolding proteins are crucial for the development of alcohol dependence and there is a substantial genetic component to these effects. This indicates that continued research into the genetic underpinnings of these glutamate-associated effects will provide important novel molecular targets for treating alcohol abuse and dependence

    ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies.

    Get PDF
    IMPORTANCE: The role of ω-3 polyunsaturated fatty acids for primary prevention of coronary heart disease (CHD) remains controversial. Most prior longitudinal studies evaluated self-reported consumption rather than biomarkers. OBJECTIVE: To evaluate biomarkers of seafood-derived eicosapentaenoic acid (EPA; 20:5ω-3), docosapentaenoic acid (DPA; 22:5ω-3), and docosahexaenoic acid (DHA; 22:6ω-3) and plant-derived α-linolenic acid (ALA; 18:3ω-3) for incident CHD. DATA SOURCES: A global consortium of 19 studies identified by November 2014. STUDY SELECTION: Available prospective (cohort, nested case-control) or retrospective studies with circulating or tissue ω-3 biomarkers and ascertained CHD. DATA EXTRACTION AND SYNTHESIS: Each study conducted standardized, individual-level analysis using harmonized models, exposures, outcomes, and covariates. Findings were centrally pooled using random-effects meta-analysis. Heterogeneity was examined by age, sex, race, diabetes, statins, aspirin, ω-6 levels, and FADS desaturase genes. MAIN OUTCOMES AND MEASURES: Incident total CHD, fatal CHD, and nonfatal myocardial infarction (MI). RESULTS: The 19 studies comprised 16 countries, 45 637 unique individuals, and 7973 total CHD, 2781 fatal CHD, and 7157 nonfatal MI events, with ω-3 measures in total plasma, phospholipids, cholesterol esters, and adipose tissue. Median age at baseline was 59 years (range, 18-97 years), and 28 660 (62.8%) were male. In continuous (per 1-SD increase) multivariable-adjusted analyses, the ω-3 biomarkers ALA, DPA, and DHA were associated with a lower risk of fatal CHD, with relative risks (RRs) of 0.91 (95% CI, 0.84-0.98) for ALA, 0.90 (95% CI, 0.85-0.96) for DPA, and 0.90 (95% CI, 0.84-0.96) for DHA. Although DPA was associated with a lower risk of total CHD (RR, 0.94; 95% CI, 0.90-0.99), ALA (RR, 1.00; 95% CI, 0.95-1.05), EPA (RR, 0.94; 95% CI, 0.87-1.02), and DHA (RR, 0.95; 95% CI, 0.91-1.00) were not. Significant associations with nonfatal MI were not evident. Associations appeared generally stronger in phospholipids and total plasma. Restricted cubic splines did not identify evidence of nonlinearity in dose responses. CONCLUSIONS AND RELEVANCE: On the basis of available studies of free-living populations globally, biomarker concentrations of seafood and plant-derived ω-3 fatty acids are associated with a modestly lower incidence of fatal CHD.ARIC was carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. CHS was supported by contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, and grant U01HL080295 from the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health The Costa-Rican adult study was supported by grant R01HL081549 from the National Institutes of Health. EURAMIC was supported by the Commission of the European Communities, as a Concerted Action within Directorate General-XII, with additional support from Directorate General-V Europe against Cancer. The national studies were financed by the Dutch Ministry of Health. Ulster Cancer Foundation and Milk Intervention Board. Grant AKT76 from Cancer Research Switzerland. Swiss National Science Foundation Grant 32-9257-87. Spanish FIS and Ministry of Science and Education, and German Federal Health Office EPIC-Norfolk was funded by grants from Medical Research Council and Cancer Research UK. Dr. Imamura also received support from the Medical Research Council Epidemiology Unit Core Support (MC_UU_12015/5). HPFS was supported by the NIH grants UM1 CA167552, R01 HL35464, AA11181, HL35464, CA55075, HL60712 and P30 DK46200 The InChianti study was supported as a ‘targeted project’ (ICS 110.1\RS97.71) by the Italian Ministry of Health and in part by the Intramural Research Program of the NIH (Contracts N01-AG-916413 and N01-AG-821336 and Contracts 263 MD 9164 13 and 263 MD 821336) KIND (Kuopio Ischaemic Heart Disease Risk Factor Study) was supported by grants from the Academy of Finland, Helsinki, Finland (grants 41471, 1041086) MCCS (Melbourne Collaborative Cohort Study) recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database. MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-MEHC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-001079, and UL1-TR-000040. Funding for SHARe genotyping was provided by NHLBI Contract N02-HL-64278. Genotyping was performed at Affymetrix (Santa Clara, California, USA) and the Broad Institute of Harvard and MIT (Boston, Massachusetts, USA) using the Affymetric Genome-Wide Human SNP Array 6.0. NSHDS I & II (The Northern Sweden Health & Disease Study I & II) was supported by the Swedish Cancer Society and the Swedish Research Council NHS (Nurses’ Health Study) was supported by research grants UM1 CA186107, R01 CA49449, R01 HL034594, P01CA87969, R01HL034594, and R01HL088521 of the National Institutes of Health The PHS (Physician’s Health Study) was supported by grant R21 HL088081, CA-34944 and CA-40360, and CA-097193 from the National Cancer Institute and grants HL-26490 and HL-34595from the National Heart, Lung, and Blood Institute, Bethesda, MD. The 3C (Three-City) study was conducted under a partnership agreement between the Institut National de la Santé et de la Recherche Médicale (INSERM), the University Bordeaux 2 Victor Segalen and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The Three-City study was also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Conseils Régionaux d’Aquitaine et Bourgogne, Fondation de France, Ministry of Research-INSERM Programme “Cohortes et collections de données biologiques”, Agence Nationale de la Recherche (grant number COGINUT ANR-06-PNRA-005), the Fondation Plan Alzheimer (grant number FCS 2009-2012), and the Caisse Nationale pour la Solidarité et l’Autonomie (CNSA) . Dr Samieri was on a grant from the “Fondation Plan Alzheimer” SHHEC (Scottish Heart Health Extended Cohort) study was funded by the Scottish Health Department Chief Scientist Organization; British Heart Foundation; FP Fleming Trust. The authors would like to acknowledge Dr. Roger Tavendale for his work with the Scottish Heart Health Study. SCHS (Singapore Chinese Health Study) was supported by the Singapore National Medical Research Council (grant number: NMRC 1270/2010) and the U.S. NIH (grant numbers: R01CA 144034 and UM1 CA182876) ULSAM 50 and 70 were funded by the Swedish Research Council for Health, Working Life and Welfare (FORTE) Uppsala City Council (ALF) and Swedish Research CouncilThis is the final version of the article. It first appeared from American Medical Association via http://dx.doi.org/10.1001/jamainternmed.2016.292

    Changing genetic architecture of body mass index from infancy to early adulthood : an individual based pooled analysis of 25 twin cohorts

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Body mass index (BMI) shows strong continuity over childhood and adolescence and high childhood BMI is the strongest predictor of adult obesity. Genetic factors strongly contribute to this continuity, but it is still poorly known how their contribution changes over childhood and adolescence. Thus, we used the genetic twin design to estimate the genetic correlations of BMI from infancy to adulthood and compared them to the genetic correlations of height. Methods: We pooled individual level data from 25 longitudinal twin cohorts including 38,530 complete twin pairs and having 283,766 longitudinal height and weight measures. The data were analyzed using Cholesky decomposition offering genetic and environmental correlations of BMI and height between all age combinations from 1 to 19 years of age. Results: The genetic correlations of BMI and height were stronger than the trait correlations. For BMI, we found that genetic correlations decreased as the age between the assessments increased, a trend that was especially visible from early to middle childhood. In contrast, for height, the genetic correlations were strong between all ages. Age-to-age correlations between environmental factors shared by co-twins were found for BMI in early childhood but disappeared altogether by middle childhood. For height, shared environmental correlations persisted from infancy to adulthood. Conclusions: Our results suggest that the genes affecting BMI change over childhood and adolescence leading to decreasing age-to-age genetic correlations. This change is especially visible from early to middle childhood indicating that new genetic factors start to affect BMI in middle childhood. Identifying mediating pathways of these genetic factors can open possibilities for interventions, especially for those children with high genetic predisposition to adult obesity.Peer reviewe
    corecore