3,298 research outputs found

    The use of ANSYS to calculate the behaviour of sandwich structures

    Full text link
    In this article, we use different models to compute displacements and stresses of a simply supported sandwich beam subjected to a uniform pressure. 8-node quadrilateral elements (Plane 82), multi-layered 8-node quadrilateral shell elements (Shell 91) and multi-layered 20-node cubic elements (Solid 46) are used. The influence of mesh refinement and of the ratio of Young's moduli of the layers are studied. Finally, a local Reissner method is presented and assessed, which permits an improvement in the accuracy of interface stresses for a high ratio of Young's moduli of the layers with Plane 82 elements

    Stresses in a Spherical Shell (Dome)

    Get PDF

    Horizon Mass Theorem

    Full text link
    A new theorem for black holes is found. It is called the horizon mass theorem. The horizon mass is the mass which cannot escape from the horizon of a black hole. For all black holes: neutral, charged or rotating, the horizon mass is always twice the irreducible mass observed at infinity. Previous theorems on black holes are: 1. the singularity theorem, 2. the area theorem, 3. the uniqueness theorem, 4. the positive energy theorem. The horizon mass theorem is possibly the last general theorem for classical black holes. It is crucial for understanding Hawking radiation and for investigating processes occurring near the horizon.Comment: A new theorem for black holes is establishe

    Making sense in testing times : a narrative analysis of organisational change & learning

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On the general theory of thin airfoils for nonuniform motion

    Get PDF
    General thin-airfoil theory for a compressible fluid is formulated as boundary problem for the velocity potential, without recourse to the theory of vortex motion. On the basis of this formulation the integral equation of lifting-surface theory for an incompressible fluid is derived with the chordwise component of the fluid velocity at the airfoil as the function to be determined. It is shown how by integration by parts this integral equation can be transformed into the Biot-Savart theorem. A clarification is gained regarding the use of principal value definitions for the integral which occur. The integral equation of lifting-surface theory is used a s the starting point for the establishment of a theory for the nonstationary airfoil which is a generalization of lifting-line theory for the stationary airfoil and which might be called "lifting-strip" theory. Explicit expressions are given for section lift and section moment in terms of the circulation function, which for any given wing deflection is to be determined from an integral equation which is of the type of the equation of lifting-line theory. The results obtained are for airfoils of uniform chord. They can be extended to tapered airfoils. One of the main uses of the results should be that they furnish a practical means for the analysis of the aerodynamic span effect in the problem of wing flutter. The range of applicability of "lifting-strip" theory is the same as that of lifting-line theory so that its results may be applied to airfoils with aspect ratios as low as three
    corecore