37 research outputs found

    Poverty and inequality in real-world schizophrenia: a national study

    Get PDF
    BackgroundSchizophrenia has high socioeconomic impact among severe psychiatric disorders.AimsTo explore clinician-reported and patient-reported inequities between patients under the poverty threshold vs. the others.Method916 patients consecutively recruited in 10 national centers received a comprehensive standardized evaluation of illness severity, addictions and patient-reported outcomes.Results739 (80.7%) of the patients were classified in the poverty group. This group had poorer objective illness outcomes (lower positive, negative, cognitive, excitement/aggressive and self-neglect symptoms and lifetime history of planned suicide) in multivariate analyses. While they had similar access to treatments and psychotherapy, they had lower access to socially useful activities, couple’s life, housing and parenthood. They had also more disturbed metabolic parameters. On the contrary, the poverty group reported better self-esteem. No significant difference for depression, risky health behavior including addictions and sedentary behavior was found.InterpretationThe equity in access to care is attributed to the French social system. However, mental and physical health remain poorer in these patients, and they still experience poor access to social roles independently of illness severity and despite healthcare interventions. These patients may have paradoxically better self-esteem due to decreased contact with society and therefore lower stigma exposure (especially at work). Schizophrenia presents itself as a distinct impoverished population concerning health-related outcomes and social integration, warranting focus in public health initiatives and improved treatment, including tailored interventions, collaborative care models, accessible mental health services, housing support, vocational training and employment support, community integration, education and awareness, research and data collection, culturally competent approaches, and long-term support

    Clinical management of molecular alterations identified by high throughput sequencing in patients with advanced solid tumors in treatment failure: Real-world data from a French hospital

    Get PDF
    BackgroundIn the context of personalized medicine, screening patients to identify targetable molecular alterations is essential for therapeutic decisions such as inclusion in clinical trials, early access to therapies, or compassionate treatment. The objective of this study was to determine the real-world impact of routine incorporation of FoundationOne analysis in cancers with a poor prognosis and limited treatment options, or in those progressing after at least one course of standard therapy.MethodsA FoundationOneCDx panel for solid tumor or liquid biopsy samples was offered to 204 eligible patients.ResultsSamples from 150 patients were processed for genomic testing, with a data acquisition success rate of 93%. The analysis identified 2419 gene alterations, with a median of 11 alterations per tumor (range, 0–86). The most common or likely pathogenic variants were on TP53, TERT, PI3KCA, CDKN2A/B, KRAS, CCDN1, FGF19, FGF3, and SMAD4. The median tumor mutation burden was three mutations/Mb (range, 0–117) in 143 patients with available data. Of 150 patients with known or likely pathogenic actionable alterations, 13 (8.6%) received matched targeted therapy. Sixty-nine patients underwent Molecular Tumor Board, which resulted in recommendations in 60 cases. Treatment with genotype-directed therapy had no impact on overall survival (13 months vs. 14 months; p = 0.95; hazard ratio = 1.04 (95% confidence interval, 0.48–2.26)].ConclusionsThis study highlights that an organized center with a Multidisciplinary Molecular Tumor Board and an NGS screening system can obtain satisfactory results comparable with those of large centers for including patients in clinical trials

    Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation.

    Get PDF
    GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine mapping of this locus using data from 101,943 subjects from 50 case-control studies. We genotype 276 SNPs using the 'iCOGS' genotyping array and impute genotypes for a further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs (rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds against >100:1. The best functional candidate, rs4442975, is associated with oestrogen receptor positive (ER+) disease with an odds ratio (OR) in Europeans of 0.85 (95% confidence interval=0.84-0.87; P=1.7 × 10(-43)) per t-allele. This SNP flanks a transcriptional enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and chromatin looping. Evidence suggests that the g-allele confers increased breast cancer susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast cell biology

    Publisher Correction: Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation.

    Get PDF
    This corrects the article DOI: 10.1038/ncomms5999

    Temple building on the Egyptian margins: the geopolitical issues behind Seti II and Ramesses IX’s activity at Amheida

    Get PDF
    Middle Eastern Studie

    Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) in the frog (Rana ridibunda) tadpole brain: Immunohistochemical localization and biochemical characterization

    No full text
    The anatomic distribution and biochemical characteristics of the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in the central nervous system of the frog, Rana ridibunda, during development. Three to four days after hatching, at stages IV-VII, PACAP-immunoreactive perikarya were detected in the dorsal thalamus within the anterior ventral area, and a few fibers were found in the medial pallium. Positive cell bodies were first observed in the hypothalamus at stages VIII-IX, at the, level of the dorsal and ventral infundibular nuclei. In these regions, the number of positive perikarya increased during ontogeny. In tadpoles, during the mid- and late premetamorphosis, a more complex organization of the PACAP-immunoreactive system was found in the thalamus with the appearance, at stages IX-XII, of two additional groups of positive neurons in the ventrolateral area and posterocentral nucleus. At stages XIII-XVIII of larval development and subsequent larval stages, PACAP-immunoreactive fibers were found in the median eminence. In newly metamorphosed animals, several additional groups of positive perikarya appeared in the medial pallium, the preoptic nucleus, the torus semicircularis, the tegmentum of the mesencephalon, and the cerebellum. The immunoreactive peptide contained in the tadpole brain was characterized by high performance liquid chromatography analysis combined with radioimmunoassay quantification. At all stages investigated, the predominant form of PACAP-immunoreactive material coeluted with synthetic frog PACAP38. The occurrence of PACAP soon after hatching indicates that the peptide may exert neurotrophic activities. The existence of immunoreactive elements in several thalamic regions at mid- and late premetamorphic stages suggests that PACAP may act as a neurotransmitter, neuromodulator, or both, during ontogenesis. Finally, the presence of PACAP-immunoreactive perikarya in hypothalamic nuclei and nerve fibers in the median eminence supports the view that PACAP may play a role in the control of pituitary hormone secretion during larval development. © 2001 Wiley-Liss, Inc

    Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) in the brain of the frog, Rana ridibunda: immunohistochemical localization and biochemical characterization

    No full text

    Functional remodeling of gap junction-mediated electrical communication between adrenal chromaffin cells in stressed rats.: chromaffin cell coupling in stressed rats

    No full text
    International audienceAn increase in circulating catecholamine levels represents one of the mechanisms whereby organisms cope with stress. In the periphery, catecholamines mainly originate from the sympathoadrenal system. As we reported, in addition to the central control through cholinergic innervation, a local gap junction-delineated route between adrenal chromaffin cells contributes to catecholamine exocytosis. Here, we investigated whether this intercellular communication is modified when the hormonal demand is increased as observed during cold stress. Our results show that in cold exposed rats, gap-junctional communication undergoes a functional plasticity, as evidenced by an increased number of dye-coupled cells. Of a physiological interest is that this upregulation of gap-junctional coupling results in the appearance of a robust electrical coupling between chromaffin cells that allows the transmission of action potentials between coupled cells. This enhancement of gap-junctional communication parallels an increase in expression levels of connexin36 (Cx36) and connexin43 (Cx43) proteins. Both transcriptional and posttranslational mechanisms are involved because Cx36 transcripts are increased in stressed rats and the expression of the scaffolding protein zonula occludens-1, known to interact with both Cx36 and Cx43, is also upregulated. Consistent with an upregulated coupling extent in stressed rats, the cytosolic Ca(2+) concentration rises triggered in a single cell by an iontophoretic application of nicotine occur simultaneously in several neighboring cells. These results describe for the first time a functional plasticity of junctional coupling between adult chromaffin cells that should be crucial for adaptation to stress or sensitization to subsequent stressors
    corecore