30 research outputs found

    Adenovirus E4orf6 targets pp32/LANP to control the fate of ARE-containing mRNAs by perturbing the CRM1-dependent mechanism

    Get PDF
    E4orf6 plays an important role in the transportation of cellular and viral mRNAs and is known as an oncogene product of adenovirus. Here, we show that E4orf6 interacts with pp32/leucine-rich acidic nuclear protein (LANP). E4orf6 exports pp32/LANP from the nucleus to the cytoplasm with its binding partner, HuR, which binds to an AU-rich element (ARE) present within many protooncogene and cytokine mRNAs. We found that ARE-mRNAs, such as c-fos, c-myc, and cyclooxygenase-2, were also exported to and stabilized in the cytoplasm of E4orf6-expressing cells. The oncodomain of E4orf6 was necessary for both binding to pp32/LANP and effect for ARE-mRNA. C-fos mRNA was exported together with E4orf6, E1B-55kD, pp32/LANP, and HuR proteins. Moreover, inhibition of the CRM1-dependent export pathway failed to block the export of ARE-mRNAs mediated by E4orf6. Thus, E4orf6 interacts with pp32/LANP to modulate the fate of ARE-mRNAs by altering the CRM1-dependent export pathway

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Decreases in 15-lipoxygenase metabolites in Olmsted syndrome model rats

    Get PDF
    Background: Olmsted syndrome (OS) is a congenital dermatosis characterized by palmoplantar keratoderma and periorificial keratotic plaque. TRPV3 (transient receptor potential vanilloid subtype 3) encodes a thermosensitive Ca2+ channel and is the causative gene of OS. However, the molecular mechanism that causes the pathological development of OS is unclear. Objective: We aimed to investigate the molecular mechanisms underlying OS pathology from the perspective of lipid metabolism. Methods: Comprehensive lipidomics and microarray analyses were conducted on tissue samples from a non-lesional skin area of OS model rats (Ht rats) and from wild type (WT) rats as the control. Results: Infiltration of leukocytes such as eosinophils and neutrophils and an increase in the fibrotic region were detected in the unaffected skin area of Ht rats compared with the WT rats. Among about 600 lipid species examined, the levels of 15-lipoxygenase (LOX) metabolites, the precursors of anti-inflammatory and pro-resolving lipid mediators, and dihydroceramides decreased by >= 16-fold in Ht rats compared with WT rats: Consistent with the decreases in the 15-LOX metabolites, expression levels of the genes that encode the 15-LOXs, Alox15 and Alox15b, were largely reduced. Conversely, increased expression levels were detected of 1136b, Cc120, Cxcl1, and Cxcl2, which encode cytokines/chemokines, and S100a8 and S100a9, which encode the Ca2+ binding proteins that are implicated in epidermal proliferation. Conclusion: The pro-inflammatory state in the unaffected skin of Ht rats caused by decreases in 15-LOX metabolites and increases in cytokines/chemokines may contribute to the pathogenesis of OS. (C) 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved

    Histological analyses by matrix-assisted laser desorption/ionization-imaging mass spectrometry reveal differential localization of sphingomyelin molecular species regulated by particular ceramide synthase in mouse brains

    Get PDF
    Sphingomyelin (SM) is synthesized by SM synthase (SMS) from ceramide (Cer). SM regulates signaling pathways and maintains organ structure. SM comprises a sphingoid base and differing lengths of acyl-chains, but the importance of its various forms and regulatory synthases is not known. It has been reported that Cer synthase (CerS) has restricted substrate specificity, whereas SMS has no specificity for different lengths of acyl-chains. We hypothesized that the distribution of each SM molecular species was regulated by expression of the CerS family. Thus, we compared the distribution of SM species and CerS mRNA expression using molecular imaging. Spatial distribution of each SM molecular species was investigated using ultra-high-resolution imaging mass spectrometry (IMS). IMS revealed that distribution of SM molecular species varied according to the lengths of acyl-chains found in each brain section. Furthermore, a combination study using in situ hybridization and IMS revealed the spatial expression of CerS1 to be associated with the localization of SM (d18:1/18:0) in cell body-rich gray matter, and CerS2 to be associated with SM (d18:1/24:1) in myelin-rich white matter. Our study is the first comparison of spatial distribution between SM molecular species and CerS isoforms, and revealed their distinct association in the brain. These observations were demonstrated by suppression of CerS2 using siRNA in HepG2 cells; that is, siRNA for CerS2 specifically decreased C22 very long-chain fatty acid (VLCFA)- and C24 VLCFA-containing SMs. Thus, histological analyses of SM species by IMS could be a useful approach to consider their molecular function and regulative mechanism

    Laparoscopic omentectomy in primary torsion of the greater omentum: report of a case

    No full text
    Abstract Background Torsion of the greater omentum is a rare cause of acute abdominal pain in adults and children. It is very difficult to make a correct diagnosis of torsion clinically because it mimics other acute pathologies; however, the preoperative diagnosis can be easily confirmed with the use of computed tomography (CT). Herein, we report a case of laparoscopic omentectomy for primary torsion of the omentum, which was not improved by conservative treatment. Case presentation A 50-year-old Japanese man presented to our hospital with acute right lower quadrant abdominal pain of a few hours’ duration. Routine blood tests showed a white blood cell count of 8900/mm3, and the C-reactive protein (CRP) level was 8.13 mg/dl. Contrast-enhanced CT scan of the abdomen revealed twisting of the omentum with a local mass of fat density and fluid distributed in a whirling oval-shaped mass pattern at the right flank and iliac fossa. Therefore, the patient was admitted to our hospital based on a diagnosis of omental torsion. The patient was treated with conservative treatment with analgesics, anti-inflammatories, and antibiotics. Although his symptoms were ameliorated, his laboratory and radiological findings worsened. We performed laparoscopic omentectomy 6 days after admission. The resected omentum was 24 cm × 22 cm in size and was twisted and dark red in color, suggesting infarction. Histological analysis revealed that the specimen was ischemic and hemorrhagic omentum, accompanied by inflammatory infiltration. The patient’s postoperative course was uneventful, and he was discharged 9 days later. Conclusion This is a rare case of primary torsion of the greater omentum that was treated successfully with laparoscopic omentectomy. Considering the increase in surgical difficulty due to inflammation from prolonged torsion and the limited efficacy of conservative treatment, we conclude that surgical intervention is warranted as early as possible when torsion of the greater omentum is suspected

    Quantifying Protein-Specific N-Glycome Profiles by Focused Protein and Immunoprecipitation Glycomics

    Get PDF
    Serum N-glycans have been reported to be potential diagnostic and therapeutic biomarkers for many diseases and conditions, such as inflammation, fibrosis, and cancer progression. We previously described the focused protein glycomic analysis (FPG) from gel-separated serum proteins. With this methodology, we sought novel glycan biomarkers for nonalcoholic steatohepatitis (NASH) and successfully identified some N-glycans that were significantly elevated in NASH patients compared to nonalcoholic fatty liver patients. Among them, trisialylated monofucosylated triantennary glycan (A3F) of alpha-1 antitrypsin showed the most dynamic change. For rapid identification of N-glycans on the focused proteins, we constructed a simplified method called immunoprecipitation glycomics (IPG), where the target proteins were immunoprecipitated with affinity beads and subsequently subjected to glycomic analysis by MALDI-TOF MS. Focusing on alpha-1 antitrypsin and ceruloplasmin as the target proteins, we compared the values of N-glycans determined by FPG and IPG. The quantified values of each N-glycan by these two methods showed a statistically significant correlation, indicating that high throughput and quantitative N-glycomics of targeted proteins can be achieved by the simplified IPG method. Thus, an analytical strategy combining FPG and IPG can be adapted to general biomarker discovery and validation in appropriate disease areas
    corecore