66 research outputs found

    Interface superconductivity in the eutectic Sr2RuO4-Ru: 3-K phase of Sr2RuO4

    Get PDF
    The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting transition temperature Tc of ~3 K. We have investigated the field-temperature (H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have also investigated the dependence of Hc2 on the angle between the field and the ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass model apparently fails to reproduce the angle dependence, particularly near H // c and at low temperatures. We propose that all of these charecteric features can be explained, at least in a qualitative fashion, on the basis of a theory by Sigrist and Monien that assumes surface superconductivity with a two-component order parameter occurring at the interface between Sr2RuO4 and Ru inclusions. This provides evidence of the chiral state postulated for the 1.5-K phase by several experiments.Comment: 7 pages and 5 figs; accepted for publication in Phys. Rev.

    Inter-application communication during LHD consecutive short pulse discharge experiment

    Get PDF
    LHD short pulse experiments are executed every three minutes. After the end of the discharge, the scientists must collect, analyze, visualize the last acquired data of the discharge, and prepare for the next discharge. From the beginning, the computer environment of the LHD (Large Helical Device) experiment has been built as a network distributed system, and various computers have been used for data acquisition or physical analysis. When one program is finished on one computer, that computer must send the results in order to the other computers to run programs. Smooth communication is required in order to finish all the tasks before the next discharge. To exchange the information among the applications running on the different computers, the authors have tried various methods, such as a commercial software to share the memory over the network, simple network file sharing method, IP multicast, web interfaces, and others. The purpose of this paper is to share our experiences of trial and error to build the network distributed systems for the consecutive plasma discharge experiments

    Integrated radiation monitoring and interlock system for the LHD deuterium experiments

    Get PDF
    The Large Helical Device (LHD) successfully started the deuterium experiment in March 2017, in which further plasma performance improvement is envisaged to provide a firm basis for the helical reactor design. Some major upgrades of facilities have been made for safe and productive deuterium experiments. For radiation safety, the tritium removal system, the integrated radiation monitoring system, and the access control system have been newly installed. Each system has new interlock signals that will prevent any unsafe plasma operation or plant condition. Major interlock extensions have been implemented as a part of the integrated radiation monitoring system, which also has an inter-connection to the LHD central operation and control system. The radiation monitoring system RMSAFE (Radiation Monitoring System Applicable to Fusion Experiments) is already operating for monitoring γ(X)-rays in LHD. Some neutron measurements have been additionally applied for the deuterium experiments. The LHD data acquisition system LABCOM can acquire and process 24 h every day continuous data streams. Since γ(X)-ray and neutron measurements require higher availability, the sensors, controllers, data acquisition computers, network connections, and visualization servers have been designed to be duplicated or multiplexed for redundancy. The radiation monitoring displays in the LHD control room have been carefully designed to have excellent visual recognition, and to make users immediately aware of several alerts regarding the dose limits. The radiation safety web pages have been also upgraded to always show both dose rates of γ(X)-rays and neutrons in real time

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering

    Get PDF
    Adhesion and shear deformation of ice have been traditionally considered to be responsible for ice friction at sliding velocities lower than about 10–2 m/s, but the simple mechanism cannot explain the recent finding that the ice–ice friction coefficient increases with decreasing sliding velocity. This article proposes an improved adhesion shear theory, which takes account of junction growth of asperities at the sliding ice interface due to sintering. At lower sliding velocities and higher homologous temperatures, contacts of ice asperities develop resulting in the increase of friction force

    raw data of PLoS ONE submission

    No full text
    The raw dat
    corecore