262 research outputs found

    Optimal Cyanobacterial Pigment Retrieval from Ocean Colour Sensors in a Highly Turbid, Optically Complex Lake

    Get PDF
    To date, several algorithms for the retrieval of cyanobacterial phycocyanin (PC) from ocean colour sensors have been presented for inland waters, all of which claim to be robust models. To address this, we conducted a comprehensive comparison to identify the optimal algorithm for retrieval of PC concentrations in the highly optically complex waters of Lake Balaton (Hungary). MEdium Resolution Imaging Spectrometer (MERIS) top-of-atmosphere radiances were first atmospherically corrected using the Self-Contained Atmospheric Parameters Estimation for MERIS data v.B2 (SCAPE-M_B2). Overall, the Simis05 semi-analytical algorithm outperformed more complex inversion algorithms, providing accurate estimates of PC up to ±7 days from the time of satellite overpass during summer cyanobacteria blooms (RMSElog 0.66, p < 0.001). In-depth analysis of the Simis05 algorithm using in situ measurements of inherent optical properties (IOPs) revealed that the Simis05 model overestimated the phytoplankton absorption coefficient [aph(λ)] by a factor of ~2. However, these errors were compensated for by underestimation of the mass-specific chlorophyll absorption coefficient [a*chla(λ)]. This study reinforces the need for further validation of algorithms over a range of optical water types in the context of the recently launched Ocean Land Colour Instrument (OLCI) onboard Sentinel-3

    Process mining for healthcare: Characteristics and challenges

    Full text link
    [EN] Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.This work is partially supported by ANID FONDECYT 1220202, Direccion de Investigacion de la Vicerrectoria de Investigacion de la Pontificia Universidad Catolica de Chile-PUENTE [Grant No. 026/2021] ; and Agencia Nacional de Investigacion y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019-21190116, ANID-PFCHA/Doctorado Nacional/2020-21201411] . With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) . The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)Munoz Gama, J.; Martin, N.; FernĂĄndez Llatas, C.; Johnson, OA.; SepĂșlveda, M.; Helm, E.; Galvez-Yanjari, V.... (2022). Process mining for healthcare: Characteristics and challenges. Journal of Biomedical Informatics. 127:1-15. https://doi.org/10.1016/j.jbi.2022.10399411512

    The physical oceanography of the transport of floating marine debris

    Get PDF
    Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively discuss what is known about the different processes that govern the transport of floating marine plastic debris in both the open ocean and the coastal zones, based on the published literature and referring to insights from neighbouring fields such as oil spill dispersion, marine safety recovery, plankton connectivity, and others. We discuss how measurements of marine plastics (both in situ and in the laboratory), remote sensing, and numerical simulations can elucidate these processes and their interactions across spatio-temporal scales

    Optical types of inland and coastal waters

    Get PDF
    Inland and coastal waterbodies are critical components of the global biosphere. Timely monitoring is necessary to enhance our understanding of their functions, the drivers impacting on these functions and to deliver more effective management. The ability to observe waterbodies from space has led to Earth observation (EO) becoming established as an important source of information on water quality and ecosystem condition. However, progress toward a globally valid EO approach is still largely hampered by inconsistences over temporally and spatially variable in-water optical conditions. In this study, a comprehensive dataset from more than 250 aquatic systems, representing a wide range of conditions, was analyzed in order to develop a typology of optical water types (OWTs) for inland and coastal waters. We introduce a novel approach for clustering in situ hyperspectral water reflectance measurements (n = 4045) from multiple sources based on a functional data analysis. The resulting classification algorithm identified 13 spectrally distinct clusters of measurements in inland waters, and a further nine clusters from the marine environment. The distinction and characterization of OWTs was supported by the availability of a wide range of coincident data on biogeochemical and inherent optical properties from inland waters. Phylogenetic trees based on the shapes of cluster means were constructed to identify similarities among the derived clusters with respect to spectral diversity. This typification provides a valuable framework for a globally applicable EO scheme and the design of future EO missions

    Optical types of inland and coastal waters

    Get PDF
    Inland and coastal waterbodies are critical components of the global biosphere. Timely monitoring is necessary to enhance our understanding of their functions, the drivers impacting on these functions and to deliver more effective management. The ability to observe waterbodies from space has led to Earth observation (EO) becoming established as an important source of information on water quality and ecosystem condition. However, progress toward a globally valid EO approach is still largely hampered by inconsistences over temporally and spatially variable in‐water optical conditions. In this study, a comprehensive dataset from more than 250 aquatic systems, representing a wide range of conditions, was analyzed in order to develop a typology of optical water types (OWTs) for inland and coastal waters. We introduce a novel approach for clustering in situ hyperspectral water reflectance measurements (n = 4045) from multiple sources based on a functional data analysis. The resulting classification algorithm identified 13 spectrally distinct clusters of measurements in inland waters, and a further nine clusters from the marine environment. The distinction and characterization of OWTs was supported by the availability of a wide range of coincident data on biogeochemical and inherent optical properties from inland waters. Phylogenetic trees based on the shapes of cluster means were constructed to identify similarities among the derived clusters with respect to spectral diversity. This typification provides a valuable framework for a globally applicable EO scheme and the design of future EO missions

    Avanços nas abordagens cirĂșrgicas na doença inflamatĂłria intestinal: explorando tĂ©cnicas modernas e resultados clĂ­nicos

    Get PDF
    Este artigo revisa as recentes evoluçÔes nas abordagens cirĂșrgicas para a doença inflamatĂłria intestinal (DII), destacando o impacto e os benefĂ­cios das tĂ©cnicas minimamente invasivas, como a cirurgia laparoscĂłpica e robĂłtica. Fornecemos uma visĂŁo abrangente dos principais estudos que comparam as intervençÔes cirĂșrgicas convencionais e modernas em termos de eficĂĄcia, segurança, recuperação do paciente e qualidade de vida. Os resultados indicam que as tĂ©cnicas minimamente invasivas podem proporcionar melhorias significativas nos resultados dos pacientes, incluindo recuperação mais rĂĄpida, menor dor pĂłs-operatĂłria, menor tempo de internação e melhor qualidade de vida. No entanto, a implementação dessas tĂ©cnicas apresenta desafios, incluindo a necessidade de treinamento especializado e a gestĂŁo de custos associados. Este artigo ressalta a importĂąncia de mais pesquisas para otimizar a implementação dessas tĂ©cnicas e para esclarecer o seu papel na gestĂŁo da DII

    Temporal changes in total and size-fractioned chlorophyll-a in surface waters of three provinces in the Atlantic Ocean (September to November) between 2003 and 2010

    Get PDF
    Phytoplankton total chlorophyll concentration (TCHLa) and phytoplankton size structure are two important ecological indicators in biological oceanography. Using high performance liquid chromatography (HPLC) pigment data, collected from surface waters along the Atlantic Meridional Transect (AMT), we examine temporal changes in TCHLa and phytoplankton size class (PSC: micro-, nano- and pico-phytoplankton) between 2003 and 2010 (September to November cruises only), in three ecological provinces of the Atlantic Ocean. The HPLC data indicate no significant change in TCHLa in northern and equatorial provinces, and an increase in the southern province. These changes were not significantly different to changes in TCHLa derived using satellite ocean-colour data over the same study period. Despite no change in AMT TCHLa in northern and equatorial provinces, significant differences in PSC were observed, related to changes in key diagnostic pigments (fucoxanthin, peridinin, 19’-hexanoyloxyfucoxanthin and zeaxanthin), with an increase in small cells (nano- and pico-phytoplankton) and a decrease in larger cells (micro-phytoplankton). When fitting a three-component model of phytoplankton size structure ̶ designed to quantify the relationship between PSC and TCHLa ̶ to each AMT cruise, model parameters varied over the study period. Changes in the relationship between PSC and TCHLa have wide implications in ecology and marine biogeochemistry, and provide key information for the development and use of empirical ocean-colour algorithms. Results illustrate the importance of maintaining a time-series of in-situ observations in remote regions of the ocean, such as that acquired in the AMT programme
    • 

    corecore