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Abstract

Inland and coastal waterbodies are critical components of the global biosphere. Timely monitoring is neces-

sary to enhance our understanding of their functions, the drivers impacting on these functions and to deliver

more effective management. The ability to observe waterbodies from space has led to Earth observation (EO)

becoming established as an important source of information on water quality and ecosystem condition. How-

ever, progress toward a globally valid EO approach is still largely hampered by inconsistences over temporally

and spatially variable in-water optical conditions. In this study, a comprehensive dataset from more than 250

aquatic systems, representing a wide range of conditions, was analyzed in order to develop a typology of opti-

cal water types (OWTs) for inland and coastal waters. We introduce a novel approach for clustering in situ

hyperspectral water reflectance measurements (n 5 4045) from multiple sources based on a functional data

analysis. The resulting classification algorithm identified 13 spectrally distinct clusters of measurements in

inland waters, and a further nine clusters from the marine environment. The distinction and characterization

of OWTs was supported by the availability of a wide range of coincident data on biogeochemical and inherent

optical properties from inland waters. Phylogenetic trees based on the shapes of cluster means were constructed

to identify similarities among the derived clusters with respect to spectral diversity. This typification provides a

valuable framework for a globally applicable EO scheme and the design of future EO missions.

The global importance of aquatic systems is incontestable

since they play a fundamental role in biogeochemical

cycling, the maintenance of biodiversity, and human well-

being and prosperity (Galloway et al. 2004; World Resources

Institute 2005; Cole et al. 2007; Borges et al. 2015; Le Qu�er�e

et al. 2015) and as such are fundamental to the delivery of
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the UN Sustainable Development Goals. Nevertheless, several

aspects of their role in these processes remain unclear (Ray-

mond et al. 2013), while their resilience to changing envi-

ronmental conditions and anthropogenic disturbance is still

poorly understood (Fabry et al. 2008; Petrescu et al. 2015).

Globally valid approaches for the study of these processes

based only on field data is typically hindered by their high

variability in both temporal and spatial scales (Dickey 2003;

Peters et al. 2007). Furthermore, the sheer number of water-

bodies and their geographic remoteness hampers their sys-

tematic study (Karl 1999; Verpoorter et al. 2014).

Satellite remote sensing offers a means to quantify physi-

cal and biogeochemical processes in aquatic systems at large

scales, providing valuable insights into mechanisms associ-

ated with biogeochemical cycles, the climate system and its

changes (Yang et al. 2013; Guo et al. 2015; Hestir et al.

2015). The rapidly increasing rate of data collection from

Earth observation (EO) missions suitable for observing water-

bodies (e.g., European Space Agency [ESA] Envisat and Senti-

nel, National Aeronautics and Space Administration [NASA]

Landsat and Aqua missions) offers long-term archives of our

aquatic environments while advances in optical sensors sup-

port new and more detailed characterization of the Earth

surface. Of particular interest is the remote sensing signal in

the visible and infrared part of the spectrum since it com-

prises information on key color-forming substances such as

phytoplankton pigments, suspended minerals, and dissolved

compounds. Nonetheless, the wide range of possible combi-

nations and composition of these substances found within

and between aquatic systems challenges the applicability of

EO techniques (Bukata 1995; Morel and Maritorena 2001;

M�elin and Vantrepotte 2015). Numerous approaches have

been developed for the retrieval of biogeochemical properties

from remote sensing data (reviews in Acker et al. 2005; Mat-

thews 2011; Odermatt et al. 2012; Blondeau-Patissier et al.

2014; Tyler et al. 2016) but quantifying the associated uncer-

tainties when these are applied over different conditions has

hitherto proved difficult.

Water optical typologies has been suggested as a mecha-

nism to delineate water masses on the basis of their optical

properties (Jerlov 1977; Prieur and Sathyendranath 1981;

Baker and Smith 1982) and thereby schematize the applica-

tion of EO methods (Arnone et al. 2004). As a result, a range

of parameters linked to the observed variability in water

color has been encompassed in classification schemes. These

include water column parameters such as Secchi disk depth

(ZSD, see Table 1 for a list of symbols and acronyms) (e.g.,

Arnone 1985), inherent optical properties (IOPs; mainly

absorption: e.g., Babin et al. 2003; Shi et al. 2014) as well as

radiometric quantities measured below or above the water

surface (e.g., Le et al. 2011; Moore et al. 2014).

Traditionally, the partitioning of water properties into

optical types has been driven by the failure of retrieval algo-

rithms, often developed for oceanic waters, to provide

accurate data in coastal and inland systems. In this context,

Morel and Prieur (1977) distinguished two water types,

depending on the predominance of phytoplankton and

autochthonous production of dissolved and particulate detri-

tal material (Case-1), or the input of external particulate and

dissolved material into the system causing an uncoupling of

phytoplankton with bulk optical properties (Case-2). More

recent studies have moved toward the differentiation of

water types in optically complex environments using in situ

and/or satellite-derived reflectance data. Most of these stud-

ies have considered the range of optical classes in marine

systems (English Channel and North Sea: Lubac and Loisel

2007; Tilstone et al. 2012; Vantrepotte et al. 2012, Iberian

coastal waters: Spyrakos et al. 2011; Adriatic Sea: M�elin et al.

2011, Yellow Sea: Ye et al. 2016; Northwest Atlantic shelf:

Moore et al. 2001, global ocean: Moore et al. 2009, 2014,

global coastal waters: M�elin and Vantrepotte 2015) with

only a few studies focussed on inland systems (lakes and res-

ervoirs in China: Le et al. 2011; Shen et al. 2015; Estonian

and Finnish lakes: Reinart et al. 2003). Overall, these classifi-

cation schemes can substantially improve the remote sensing

products associated with individual optical water types

(OWTs), and have demonstrated the need for a better under-

standing of the underlying variability especially in nearshore

and inland waterbodies (Moore et al. 2014). In parallel, opti-

cal water typologies based on remote sensing data have

found further applications in ecological studies (Martin Tray-

kovski and Sosik 2003), the detection of blooms (compre-

hensive list in Blondeau-Patissier et al. 2014) and in the

more detailed study of the relationships between absorption

parameters and water constituents especially when these can

be determined in large datasets from different aquatic sys-

tems (Torrecilla et al. 2011).

Several hierarchical, partitional, and hybrid (Jain et al.

1999) clustering techniques have been implemented for the

classification of remote sensing reflectance (Rrs) into groups

based upon differences in magnitude and shape. Conse-

quently, techniques including agglomerative hierarchical

(Shi et al. 2014), k-means clustering (Palacios et al. 2012),

fuzzy clustering (Gonz�alez Vilas et al. 2011; Moore et al.

2014), and artificial neural networks (Canziani et al. 2008)

have been used to uncover clusters present in these datasets

using different degrees of implicit or explicit knowledge.

While these approaches provide useful insights into the dif-

ferentiation of water masses based on their optical proper-

ties, they have often lacked a comprehensive analysis of the

physical basis to the definition of the clusters in terms of

their variability in IOPs and biogeochemical significance.

Moreover, few studies have considered the relations between

OWTs found in coastal and inland aquatic systems. In spite

of the progress made in the development of these methodol-

ogies, a solid foundation for dealing with high data dimen-

sionality, uncertainty due to the use of different sensors, and

variability in the relevant spectral features is still lacking.
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The aim of the present study is to extend our knowledge

of the optical diversity of aquatic systems, and in particular

inland waters. To this end, a large database of observations

from a range of different systems and a wide range of water

conditions is used to: (1) obtain distinct OWTs; (2) develop a

methodological approach for capturing key features found in

the spectra based on functional data analysis; and (3) assess

similarities and differences between inland waters and

coastal marine systems. It is expected that the optical diver-

sity of inland waterbodies exceeds that of marine systems,

reflecting the wide diversity in morphology and surrounding

land use of inland waters. Nevertheless, we expect that

within and between regions recurrent OWTs can be detected,

such as systems dominated by phytoplankton or by high

light absorption due to dissolved matter. We subsequently

investigate the extent to which OWTs can be approximated

by a limited set of wavebands available from current and

future remote sensors (“Implications for implementation to

satellite imagery” section).

Datasets

A large dataset (hereafter denoted Dataset-N) of 4035 in

situ hyperspectral Rrs spectra from inland and coastal marine

waters was used in the clustering analysis. The dataset con-

sisted of data from more than 250 inland lakes, reservoirs

and large rivers (Dataset-I, inland waters) and data from 14

campaigns in marine waters (Dataset-C, coastal waters). For

this study, data were sourced from the in situ bio-optical

data repositories LIMNADES (Lake Bio-optical Measurements

and Matchup Data for Remote Sensing: http://www.lim-

nades.org) and SeaBaSS (SeaWiFS Bio-optical Archive and

Storage System: http://seabass.gsfc.nasa.gov).

Inland aquatic systems

The LIMNADES data (Dataset-I) used here were compiled

from 16 individual datasets of bio-optical and biogeochemi-

cal measurements from a variety of natural and artificial

inland aquatic systems including mainly lakes and reservoirs

but also rivers and floodplains. Table 2 summarizes these

Table 1. Symbols and acronyms.

Symbols/acronyms Description Units

EO Earth observation —

OWTs Optical water types —

k Wavelength nm

Datasets

LIMNADES Lake Bio-optical Measurements and Matchup Data for Remote Sensing —

SeaBASS SeaWiFS Bio-optical Archive and Storage System —

I Inland waters only —

C Coastal waters only —

N All waters —

Biogeochemical parameters

Chl a (Concentration of) Chl a mg m23

PC (Concentration of) Phycocyanin mg m23

TSM (Concentration of) Total suspended matter mg L21

ISM (Concentration of) Inorganic suspended matter mg L21

CDOM Colored dissolved organic matter m21

IOP Inherent optical properties

aCDOM(k) Absorption coefficient at wavelength k of CDOM m21

aNAP(k) Absorption coefficient at wavelength k of “non-algal” particles (NAP) m21

aph(k) Absorption coefficient at wavelength k of phytoplankton m21

SCDOM Slope coefficient of aCDOM model: aCDOM(k) 5 aCDOM(kr) e2SCDOM(k2kr) 1 K at reference wavelength

(400 nm), where K is a parameter used to offset baseline shifts unrelated to the absorption of CDOM

nm21

SNAP Slope coefficient of aNAP model: aNAP(k) 5 aNAP(kr) e–SNAP(k2kr) 1 K at reference wavelength (400 nm),

where K is a parameter used to offset baseline shifts unrelated to the absorption of NAP

nm21

sIOP Specific inherent optical properties

a*NAP(k) Absorption coefficient at wavelength k of NAP normalized to TSM concentration g m22

a*ph(k) Absorption coefficient at wavelength k of phytoplankton normalized to Chl a concentration m2 mg21

AOP Apparent optical properties

Rrs(k) Remote-sensing reflectance Rrs sr21

ZSD Secchi disk depth m
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datasets, providing references to detailed information includ-

ing sources and spatial coverage. A total of 3025 Rrs(k) spec-

tra across a wide range of system characteristics, conditions,

and geographical conditions were used in the clustering

analysis. Cluster analysis was initially performed only on

Dataset-I Rrs(k) to facilitate the determination of distinct

OWTs solely in inland water systems. Paired measurements

of IOPs and biogeochemical parameters were then used to

support the characterization of the resulting clusters.

Coastal systems

The well-documented SeaBaSS dataset (Dataset-C, Table 3)

(Werdell and Bailey 2002; Werdell et al. 2003) was used for

comparison to inland optical clusters as defined by the

classification analysis. Data extracted from SeaBaSS were

restricted to hyperspectral Rrs(k) (n 5 1010) spectra from

mainly coastal and but also some open ocean environments

originally measured above-water. Dataset-C included few

spectra (n 5 68) from open ocean environments, but due to

the dominance of data from coastal waters, it is considered

here to represent coastal environments. Only a limited

number of these datasets also included coincident measure-

ments of IOPs and water quality parameters. As a result,

IOPs and water constituents from the marine environment

were not considered in this study. Nevertheless, clustering

algorithms were applied to Rrs(k) spectra from both inland

and coastal systems in order to broaden the application of

the classification scheme and study commonalities in spec-

tral patterns across inland and coastal waters.

Definition of reflectance

Clustering analysis was based on hyperspectral Rrs, with a

minimum resolution of 1 nm and spectral range of 400–

800 nm. Rrs(k) (in sr21) is defined here as the upwelling radi-

ance emerging from the water column divided by the

downwelling irradiance reaching the water surface. For those

cases when in situ measurements were carried out just below

surface, Rrs (02) was converted to Rrs (01) using the air–sea

interface transfer coefficients of Eq. 1 (Lee et al. 1999):

Rrs 01ð Þ5 0:52 Rrs 02ð Þ= 121:7 Rrs 02ð Þ½ � (1)

Table 2. Description of the datasets from inland (I) water systems used in this work.

Dataset Principal institute Inland system(s) References

I-A CAS Lake Taihu, China Zhang et al. (2007, 2010)

I-B CEDEX 56 reservoirs and 2 lakes in Spain Ruiz-Verd�u et al. (2005, 2008), Simis et al. (2007)

I-C CNR Five lakes in the Mediterranean and subalpine

eco-regions of Italy

Bresciani et al. (2011), Giardino et al.

(2005, 2014a,b, 2015), Guanter

et al. (2010), Manzo et al. (2015)

I-D CU 43 sites in U.S. inland waters Gitelson et al. (2007), Schalles (2006),

Schalles and Hladik (2012)

I-E EC Erie; Ontario; Winnipeg (Canada and U.S.) Binding et al. (2008, 2010, 2011, 2013)

I-F INPE Lago Grande de Curuai (Brazil) Barbosa (2007)

I-G IU Three drinking water reservoirs in central Indiana (U.S.) Li et al. (2013, 2015)

I-H NIOO-KNAW Lakes Loosdrechtse, Plassen and IJsselmeer, Netherlands Guanter et al. (2010), Ruiz-Verd�u et al. (2008),

Simis et al. (2005, 2007)

I-I UCT Three South African reservoirs Matthews (2014), Matthews and Bernard (2013)

I-J UL Lake Bogoria, Kenya Tebbs et al. (2013)

I-K UNH 62 lakes in New England, U.S. and Great Salt Lake, U.S. Bradt (2012), Moore et al. (2014)

I-L UNL-A Several lakes and reservoirs in eastern

Nebraska and northwest Iowa, U.S.

Dall’Olmo et al. (2003, 2005), Dall’Olmo and

Gitelson (2005), Gitelson et al. (2008)

I-M UNL-B Fremont State Lakes (U.S.) and Lake Kinneret (Israel) Gitelson et al. (2009), Gurlin et al. (2011),

Yacobi et al. (2011)

I-N USTIR Lake Balaton and Four neighboring aquatic systems in Hungary

Five lakes in the UK

Riddick et al. (2015)

I-O UT Lake Peipsi, Estonia Kutser et al. (2012, 2013)

I-P UTSU Five lakes in Japan and China Yang et al. (2013), Jaelani et al. (2013),

Matsushita et al. (2015)

CAS, Chinese Academy of Sciences; CEDEX, Centro de Estudios Hidrogr�aficos; CNR, Consiglio Nazionale delle Ricerche; CU, Creighton University; EC,

Environment Canada; INPE, Insituto Nacional de Pesquisas Espaciais; IU, Indiana University; NIOO-KNAW, Netherlands Institute of Ecology; UCT, Uni-
versity of Cape Town; UL, University of Leicester; UNH, University of New Hemishere; UNL, University of Nebraska-Lincoln; USTIR, University of Stirling;
UT, University of Tartu; UTSU, University of Tsukuba.
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Methods

Functional data analysis

Clustering was employed in order to identify statistically

robust groups of spectra, which can be used to assist the defi-

nition of distinct OWTs found in aquatic systems. In the

clustering process, the approach used for preprocessing of

the data can play a crucial role in determining the influence

of spectral features on the clusters obtained. In previous

studies, classification of radiometric quantities have mainly

considered unscaled data (e.g., Moore et al. 2001; M�elin

et al. 2011); however, spectra scaling has been suggested by

multiple authors in order to moderate the effect of variation

in amplitude attributed to changes in the concentrations of

optically active constituents (Mobley 1994; Schalles 2006;

Ficek et al. 2012). In the analysis presented here, the Rrs(k)

were standardized prior to clustering in order to reduce the

effect of the mean spectral reflectance on the separation of

clusters. It is further thought that uncertainties in Rrs(k) are

more likely to have an effect on the amplitude of the spectra

rather than their shape (Craig et al. 2006). The standardiza-

tion used in this study entailed division by the area between

each spectra and a zero baseline, calculated using numerical

integration. This standardization approach was chosen

because it preserves the shape of the Rrs across the different

parts of the spectrum (Vantrepotte et al. 2012).

Subsequently, a functional data analysis approach was

used to cluster the spectra. This approach approximates each

Rrs(k) using a smooth function which is estimated via a lin-

ear combination of B-spline basis functions (full details are

provided in Ramsay 2006). Rather than treating the reflec-

tance values measured at each wavelength as single, corre-

lated observations they are viewed as realizations of an

unobservable continuous variable. Viewing the Rrs spectra in

this way and clustering the smooth curves allows features

within the groups (i.e., commonalities in shape and mean

level) to be captured, which may be neglected if clustering

was applied only to a single summary value (Tarpey and Kin-

ateder 2003; Tarpey 2007). An attractive feature of the

smoothing methods used within functional data analysis is

that the underlying functions can be estimated such that

excessive local variability which is not of interest is removed.

In addition to reducing the noise in the data, by treating the

basis coefficients which estimate each curve as the quantities

to be clustered, we can justify the assumption of indepen-

dence amongst variables. This is a fundamental assumption

of clustering which is often overlooked (Fraley and Raftery

1998) and can be violated in hyperspectral data due to the

presence of strong autocorrelation between observations at

neighboring wavelengths.

The number of basis functions used to estimate each

smooth Rrs function controls the degree of flexibility, with

more basis functions resulting in more flexibility. Adaptive

smoothing can also be applied via the use of a non-constant

basis to enable more flexibility in regions where there is

greatest variability amongst each Rrs(k). In general, far fewer

basis functions are used to represent each smooth function

than there are original measurements, leading to a large

reduction in dimensionality.

Table 3. Description of the datasets from coastal (C) systems used in this work. Datasets were downloaded from SeaBaSS (SeaWiFS
Bio-optical Archive and Storage System: http://seabass.gsfc.nasa.gov) (Werdell and Bailey 2002; Werdell et al. 2003) on 4th of March
2016.

Dataset

Principal institute responsible for sample and data

collection and analysis/experiment Marine system(s)

C-A NOAA_CCMA/CALIFORNIA_2002 Coast of California

C-B NOAA_CCMA/GLORIA North Carolina

C-C NOAA_CCMA/NC North Carolina

C-D NRL/ADRIATIC Adriatic Sea

C-E NRL/CHESAPEAKE Chesapeake Bay

C-F NRL/COJET Mississippi Sound

C-G NRL/HORN_ISLAND Horn Island, Mississippi Sound

C-H NRL/HYPOXIA Mississippi Sound

C-I NRL/LAUDERDALE South-eastern coast, Florida

C-J NRL/MONTEREY Monterey Bay

C-K NRL/SEED Gulf of Mexico

C-L NRL/SO_GASEX Southern Ocean

C-M UCSB/BBOP Bermuda

C-N USF/CARIACO CARIACO station off the continental shelf of

Venezuela (south-eastern Caribbean Sea)

NOAA_CCMA, National Oceanic and Atmospheric Administration-Center for Coastal Monitoring and Assessment; NRL, United States Naval Research

Laboratory; UCSB, University California Santa Barbara; USF, University South Florida.
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k-means clustering

The k-means approach (MacQueen 1967; Lloyd 1982) was

used to generate spectrally distinct water classes from the

Rrs(k) datasets. The k-means algorithm is a partitional

approach (Jain 2010), well known for its efficiency in the

classification of large datasets (Huang 1998). For functional

data, each individual and the cluster centers can be defined

in terms of the sets of basis coefficients which define the

curves. Multiple starting points (50) were specified for the

cluster centers in order to ensure the partition identified is

not sensitive to the initial selection.

As with all clustering approaches, for k-means, there is a

choice for the appropriate number of clusters. In this case,

we used a gap statistic (Tibshirani et al. 2001), which selects

the statistically optimal number of clusters by comparing the

change in within-cluster dispersion between the observed

data and a null reference distribution that is generated using

the observed data. The reference distribution assumes there

is no cluster structure in the data. Fuzzy c-means (FCM) clus-

tering was also explored. While the estimated membership

function in FCM may be attractive, the drawback of this

approach is the required specification of an additional

parameter, namely a weighting exponent which determines

the degree of fuzziness in the clusters. k-means is a special

case of the FCM with the weighting exponent fixed to 1,

resulting in all data points being assigned to one and only

one cluster.

As a measure of proximity to cluster mean, the L2 norm

distance was calculated between each individual and each

cluster mean. These curve-mean distances were scaled

between 0 and 1 and were used to quantify how close the

curve was to each cluster mean.

In this study, we use the term:

� “Cluster” to refer to the end-member resulting from cluster

analysis, i.e., set of distinct spectra as these were separated

by k-means algorithm,

� “Group” to refer to spectra with high within similarity of

the second derivatives of cluster means based on the L2

norm distances and

� “Type” for the representative spectrum (here, the mean

spectrum is used) and in-water optically active compounds

for a cluster.

Results

Spectral variability, rescaling and adaptive smoothing

Figures 1a, 2a show the in situ Rrs(k) spectra from

Dataset-I and Dataset-C on their original scale (dataset

details are provided in Tables 2, 3). Spectra from inland

waters generally had higher mean reflectance than those

from coastal waters but both sets demonstrated consider-

able variation in magnitude, even when they exhibited sim-

ilar shapes. The reflectance peak in the green part of the

spectra (500–600 nm) ranged from 0.0003 sr21 to 0.2031

sr21 in Dataset-I and from 0.001 sr21 to 0.051 sr21 in

Dataset-C. In the near-infrared (NIR) spectral region (680–

720 nm), maximum values of the Rrs peak were 0.2137 sr21

and 0.0359 sr21, respectively, for the inland and coastal data.

Spectral features appearing around Rrs (760) could be indica-

tive of an abnormal signal, pertaining to flaws in the measure-

ment and processing protocols (e.g., suboptimal sensor

calibration, incompatible viewing angles, or lack of synchro-

nicity in the measurement). As shown in Figs. 1b, 2b, stan-

dardized in situ Rrs(k) spectra are accompanied by lower

variability in the overall magnitude of reflectance. Coefficient

of variation varied from 98% to 236% in Dataset-I with a local

maximum at 675 nm and an overall minimum at 550 nm.

Similarly, for Dataset-C, this varied from 98% at 550 nm to

236% at 675 nm.

The resulting design matrix for the B-spline basis used in

this study was based on 25 cubic basis functions (Fig. 3).

This number provided the best achievable fit to the data and

captured all key features of the standardized Rrs(k). Figure 3

also illustrates the unequally spaced basis of B-spline func-

tions. The B-spline representation used approximately one

knot every 30 nm between 400 nm and 500 nm, one

knot every 15 nm between 500 nm and 750 nm, with the

750–800 nm part of the spectrum being covered by a single

interval. Although the large basis function used between

750 nm and 800 nm ignores a large part of the variability in

this range, it helps resolve issues of instrument noise and

poor instrument calibrations that often affect this part of the

spectrum (Fargion and Mueller 2002). The sparsity of the

basis here will prevent features which are not of interest, or

are subject to a high degree of uncertainty having a dispro-

portional influence on the definition of clusters. Unusual

spectra revealed by functional boxplots (not shown) were

considered to correspond to “extreme” cases (13 spectra) or

erroneous measurements (27 spectra) where successive peaks

were shown. The former cases referred to very clear waters

(cluster I13), while the latter cases were removed from the

dataset.

Clustering of reflectance spectra

The k-means algorithm was applied to the basis coeffi-

cients which defined the smooth Rrs(k) spectra for three

datasets: inland (Dataset-I), coastal (Dataset-C), and all

waters (Dataset-N). For k-means clustering, the statistically

optimal number of clusters determined by using the gap

statistic (with 500 reference distributions) was 12 for

Dataset-I and 9 for Dataset-C. An additional group of

curves (I13) that were identified as being unusual by the

functional boxplots was added to the 12 inland clusters

identified using the k-means approach. All pairs of cluster

means were found to be significantly different using a per-

mutation t-test (Ramsay 2007), suggesting unique structural

groups.

Spyrakos et al. Optical types of inland and coastal waters

851



The optimal number of clusters for Dataset-N was iden-

tified using an approach based on analysis of similarity

between a fixed number of clusters due to the large num-

ber of spectra positioned on the boundaries between sev-

eral clusters. The number of clusters was initially set to 21

based on the assumption that this would represent the

upper bound (as the sum of clusters resolved in dataset-I

[n 5 12] and Dataset-C [n 5 9] separately). In order to

identify clusters that could subsequently be merged, the

difference between clusters was explored in terms of the

L2 norm distance between the mean curves for each

cluster.

Differences between the shapes of the cluster mean

curves, following a second derivative transformation, were

also considered. For Dataset-I, the means of the 13 distinct

standardized and non-standardized Rrs(k) spectral clusters, as

identified by the k-means algorithm, are presented in Fig. 4.

The largest numbers of spectra were assigned to clusters I2

(15.3%) and I6 (14.3%). Clusters I1 and I13 collectively con-

tained 1.1% of the data. We noted that clusters were not

strongly driven by waterbody or season but were distributed

across space and time.

Figure 5 presents the mean in situ Rrs(k) spectra before

and after standardization, for the nine groups obtained by

applying the k-means algorithm to the functional data from

Dataset-C. The spectra were nearly equally partitioned (12.1–

15.3%) between clusters C1, C3, C4, C6, C7, and C8. Con-

versely 22 (2.2%), 46 (4.9%), and 83 (8.4%) spectra were

grouped in clusters C2, C5, and C9. Figure 6 shows Rrs and

standard deviation for each cluster identified in inland

waters. The k-means classification of all data combined

(Dataset-N) resulted in the 21 sets of reflectance spectra

shown in Fig. 7.

Bio-optical properties of inland water clusters

Figures 8, 9 summarize water constituents and the optical

properties corresponding to each cluster of Dataset-I (I-

clusters). Several parameters measured coincident to the

reflectance measurements are considered here. The water

constituent concentrations that were most commonly

Fig. 1. In situ hyperspectral remote sensing reflectance (Rrs) spectra of datasets (Table 1) collected at inland aquatic systems (a) on their original scale
(sr21) (b) standardized.
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measured in parallel with the radiometric measurements

were chlorophyll a (Chl a) (n 5 2835), total suspended mat-

ter (TSM) (n 5 1836), and absorption of colored dissolved

organic matter (CDOM) at 442 nm (aCDOM(442)) (n 5 1720),

while 622 Rrs(k) measurements were also accompanied by

absorption coefficients of phytoplankton pigments aph(k)

and non-algal particles (NAP) aNAP. Despite the high variabil-

ity of these in-water parameters and the often complex rela-

tionships between apparent optical properties and the

particulate and dissolved material found in inland waters,

there are some notable differences among the groups of in

situ water properties for each partition of Rrs(k). As expected,

the optical properties and concentrations of optically active

substances underpin the clustering of Rrs(k).

The 13 I-clusters exhibited marked differences in terms of

their water constituent concentrations and IOPs. For exam-

ple, clusters I1, I7, and I8 exhibited very high concentrations

(mean values well above 100 mg m23) of Chl a and the

accessory pigment phycocyanin (PC) (mean values greater

than 200 mg m23). In contrast, Chl a was remarkably low in

clusters I3 (1.60 6 1.02 mg m23, n 5 214) and I13 (0.27 6

0.57 mg m23, n 5 8). These clusters also showed higher val-

ues of Secchi disk depth (I3: 6.17 6 2.52 m, n 5 173; I13:

Fig. 2. In situ hyperspectral remote sensing reflectance spectra (Rrs) of datasets (Table 3) collected at coastal systems (a) on their original scale (b)
standardized.

Fig. 3. Unequally spaced basis of B-spline functions (25) used in the
study to fit the smooth curve.
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18.45 6 4.17 m, n 5 2) and the lowest mean concentration

of TSM (I3: 1.57 6 1.64 mg L21, n 5 87; I13: 1.00 6 0.88 mg

L21, n 5 8). We noted that the highest mean inorganic sus-

pended matter (ISM) concentration (94.41 6 64.45 mg L21,

n 5 200) was found in the samples grouped in cluster I5. In

addition, cluster I5 was characterized by the highest

aNAP(442) mean (5.76 6 2.90 m21, n 5 112), while clusters

I10 and I1 had higher aCDOM(442) (9.00 6 7.35 m21, n 5 50)

and aph(442) (106.49 6 10.28 m21, n 5 11), respectively.

Clusters with the highest aph(442) and aNAP(442) values were

principally found among the groups with their lowest mass-

specific absorption coefficients (aph(442):[Chl a] or a*ph(442)

and aNAP(442):[TSM] or a*NAP(442)) and, corresponding to a

higher degree of “pigment packaging” (e.g., Bricaud et al.

1995) or cell shading and a more minerogenic NAP. In cases

where clusters had similar mean concentrations of one or

more biogeochemical parameters, we generally observed dif-

ferences in other variables which facilitated their distinctive

characterization. For example, cluster I4 showed comparable

to I5 Chl a but contrasting ISM concentrations.

Figure 10a–c illustrate absorption spectra of CDOM and

specific absorption of phytoplankton and NAP for each

cluster identified by the classification analysis. In the analysis,

we considered a spectral range from 400 nm to 700 nm,

which corresponds to the range available for most data

points. Both aCDOM and its spectral slope (SCDOM) varied

between the different clusters. Cluster I3 showed the lowest

SCDOM (0.0114 6 0.0068 nm21, n 5 6). Higher SCDOM values

were observed in clusters I9 (0.0173 6 0.0050 nm21,

n 5 39), I2 (0.0161 6 0.0037 nm21, n 5 57), and I11

Fig. 4. Mean remote sensing reflectance spectra (Rrs) for each distinct cluster obtained in inland waters as were identified by k-means algorithm
applied on the functional data. Left: on their original scale. Right: standardized.

Fig. 5. Mean remote sensing reflectance spectra (Rrs) for each distinct cluster obtained in marine waters as were identified by k-means algorithm
applied on the functional data. Left: on their original scale. Right: standardized.
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(0.0150 6 0.0017 nm21, n 5 30). SCDOM showed relatively low

variability within the remaining clusters with mean values in

these ranging from 0.0139 nm21 to 0.0147 nm21. Figure 10b

shows high variability of mean a*ph(k) in both magnitude and

spectral shape among the clusters where both aph(k) and Chl

a were measured. The differences in spectral amplitude were

mainly observed in the blue and red regions of the spectra;

cluster I3 exhibited the lowest blue to red peak ratio while

that ratio was higher in clusters I5, I11, and I12. These clus-

ters were also characterized by the lowest mean value

(0.0080 6 0.0017 nm21, n 5 45) of slope for NAP absorption,

SNAP.

Fig. 6. Mean (solid black line) remote sensing reflectance (Rrs) and standard deviation (shaded area) obtained in inland waters as were identified by
k-means algorithm.
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Fig. 7. Mean remote sensing reflectance spectra (Rrs) colored by dataset for each distinct cluster obtained in natural waters identified by k-means
algorithm applied on the functional data. Spectra are shown on standardized reflectance scale. Percentage of curves of each type in each group is

shown in plot titles.



Figure 11 summarizes the relative contribution of opti-

cally active substances aCDOM, aph, and aNAP to total

absorption (minus pure water absorption) at 442 nm for

each optical cluster. Phytoplankton absorption was consis-

tently the dominant absorption component of samples

grouped in clusters I1 and I7 and regularly the weakest

component in I4 and I5. Spectra belonging to cluster I5

were predominantly characterized by strong relative influ-

ence of aNAP. aCDOM was the dominant light absorbing

coefficient at 442 nm for clusters I2 and I3. Data points

grouped in clusters I8 and I6 were mainly found toward

the upper half of the ternary plot, whereas samples col-

lected from clusters I11 and I12 mostly appeared at the

lower half of the plot.

Fig. 8. Boxplots with probability density of (a) Chl a, (b) PC, (c) TSM, and (d) ISM for each optical cluster in Dataset-I. The sample median is indi-

cated by a vertical line within the box while dots represent data beyond the bounds of the error bars and n the number of observation.
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Fig. 9. Boxplots with probability density of (a) Secchi disk depth, ZSD (b) absorption coefficient of CDOM, aCDOM(442) (c) absorption coefficient of
phytoplankton, aph(442) (d) absorption coefficient of phytoplankton normalized to Chl a concentration, a*ph(442) (e) absorption coefficient of “non-
algal” particles, aNAP(442) and (f) absorption coefficient of NAP normalized to TSM concentration, a*NAP(442), for each optical cluster in Dataset-I.

The sample median is indicated by a vertical line within the box while dots represent data beyond the bounds of the error bars and n the number of
observation.



Relationships among optical clusters in inland and

coastal waters

Rrs(k) spectra from coastal systems were predominant in

clusters N2, N5, N10, N12, N18, and N20 (all with relative

contributions above 79.3%), while the remaining clusters

were largely composed by spectra from inland waters. Six-

teen clusters contained spectra derived from both inland and

coastal systems (Fig. 7). A phylogenetic tree was constructed

to explore relationships among the 21 cluster means (Fig.

12). This tree represents the similarity of the second deriva-

tives of cluster means based on the L2 norm distances. Clus-

ters N2 (n 5 20), N3 (n 5 36), N7 (n 5 57), N9 (n 5 21), and

N15 (n 5 59) can be seen to be most distinct from other

clusters with N3, N15, and N2 showing most difference from

all other clusters in terms of their second derivatives. Two of

these clusters (N2 and N9) also contained the lowest number

of Rrs(k) spectra indicating they may be composed of uncom-

mon spectral properties. Cluster N2 displayed spectral fea-

tures in the blue and red region of the spectrum that

suggests residual glint contribution in the measured signal.

This group of measurements was therefore excluded from

further analysis.

Using the phylogenetic tree, seven major Groups with

high within group similarity were identified (Group A: N18,

N12; B: N11, N13, N14; C: N4, N17; D: N10, N21; E: N8, N20;

F: N1, N6, N16; G: N5, N19). Group A (n 5 310) mainly

included reflectance spectra from Dataset-C with relatively

high Rrs(k) in the blue. Groups E-F both had three Rrs(k) peaks

between 500 nm and 750 nm and were mainly found in

Dataset-I. The reflectance peak around 700 nm in Group F

appeared associated with particulate scattering and occurred

at longer wavelengths than in Group E, where cluster N5 sug-

gests the presence of Chl a fluorescence at around 685 nm

and cluster N19 suggests highly turbid water with a minor

contribution of phytoplankton absorption. Groups B, D, and

G were assembled closely (Fig. 13). These three Groups con-

tained data from both Dataset-I and Dataset-C. Relatively

Fig. 11. Ternary plot representing the mean relative contribution of
optically active substances (absorption coefficient of CDOM [aCDOM],

absorption coefficient of phytoplankton [aph] and absorption coefficient
of “non-algal” particles [aNAP]) to total absorption at 442 nm for each
optical cluster in dataset-I. Error bars indicate standard deviation of the

mean.

Fig. 10. Mean spectra of (a) absorption coefficient of CDOM, aCDOM(k)
(b) absorption coefficient of phytoplankton normalized to Chl a concen-

tration, a*ph(k) and (c) absorption coefficient of NAP normalized to TSM
concentration, a*NAP(k), of each optical cluster in Dataset-I. Line colors
and types as shown in Fig. 4.
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clear waters (no prominent peak near 700 nm) and a strong

influence of aCDOM in the blue characterize the clusters in

Group B. Clusters N10 and N21 (Group D) shared a sharp

Rrs(k) decrease near 600 nm and high blue-to-green Rrs(k) ratio

suggesting clear waters, but with a lower blue-to-green ratio

compared to the clusters of Group A. Last, Clusters N5 and

N19 showed high similarities of the second derivatives; nei-

ther cluster shows clearly defined features beyond the attenu-

ation of light by aCDOM in the blue and absorption by water

in the red to NIR domain. Interestingly, N5 contained primar-

ily data collected in coastal systems (79.27%) whereas N19

was composed of spectra found in inland waters (98.21%).

Discussion

Methodological considerations

Rrs(k) holds valuable information on the concentration

and composition of in-water constituents (Gordon et al.

1988; Gordon and Franz 2008) and is now readily available

from multispectral ocean color satellite sensors. We present

a novel approach for classification of in situ hyperspectral

Rrs(k) to help optimize the interpretation of proximal or

remotely sensed Rrs(k) in terms of biogeochemically-relevant

quantities. While k-means is a classical statistical method, its

application in a functional setting is not routine, particularly

when the irregularly spaced B-spline basis coefficients have

been selected so the clusters are based on the areas of the

spectra, which are of most interest. The robustness of this

approach is potentially dependent on the smooth functions

which are used to estimate the underlying smooth processes

from which the observed data have arisen. The 25 cubic

basis functions, with different resolution along the wave-

length, employed here provided an excellent fit to the data

(Fig. 3), capturing all key features of the spectra while

removing local variability. This approach also proves to be

an efficient way to reduce dimensionality and noise of the

spectra while preserving distinctive features. FCM clustering

was also explored and the adjusted Rand index (ARI) (Hubert

and Arabie 1985) used for the comparison with the k-means

approach suggested strong agreement (ARI greater than 0.76)

between the two clustering methods. While both shape and

amplitude of Rrs(k) contain information about optically

active constituents, we standardized the in situ spectra (Van-

trepotte et al. 2012) in order to reduce the influence of

Fig. 12. Phylogenetic tree representing the similarity of the second derivatives of all cluster means based on L2 norm distances. The colors of the
labels represent the percentage of spectra originating from inland waters in each group.
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spectral amplitude on clustering. This is considered a suit-

able approach when considering Rrs(k) from such diverse ori-

gins. Focussing on the shape rather than amplitude of the

spectra implies primary sensitivity to spectral variation in

absorption coefficients in the clustering (Loisel and Morel

2001). However, since the absorption by water itself also dis-

plays a spectral dependence, the attenuation depth of the

recorded signal, and therefore the light path and intensity of

light scattering which primarily affects Rrs(k) amplitude, does

bear influence on the clustering results. General observations

of the obtained clusters (Figs. 4, 5) show amplitude variabil-

ity in dominant parts of spectra but with distinctive spectral

features. However, data standardization prior to clustering

has also been suggested to reduce spurious effects of unequal

variances and clustering of non-standardized Rrs(k) is still

most common in the literature (Moore et al. 2014; Shen

et al. 2015). Nevertheless, when Mahalanobis distance is

used in the cluster analysis, data preprocessing is considered

redundant unless rounding errors in the covariance matrix

have not been restrained (Besset 2001; Eyob 2009).

Optical water typology

While studies of optical water typology (e.g., Jerlov 1977;

Morel and Prieur 1977; Moore et al. 2009) provided useful

insights on the distinctive optical types found in aquatic sys-

tems, they were challenged by the representativeness of opti-

cal conditions and/or limited understanding of factors

driving the observed variability among the different optical

clusters. Our ability to identify representative clusters from

4035 Rrs(k) spectra collected in 250 inland water and several

coastal systems benefits from operating over a wide range of

in situ biogeochemical parameters. In this study, we were

able to resolve clusters of Rrs(k) spectra representing statisti-

cally distinct optical clusters found in inland or coastal

waters and, in some cases, in both environments. The num-

ber of clusters was identified following a purely data driven

approach where the number chosen was selected by the gap

statistic as statistically optimal. The OWTs suggested here are

considered as typical OWT found in the datasets and emerge

as representations of optical conditions that are a glimpse of

a natural continuum system in aquatic systems.

Fig. 13. Cluster merging based on the similarity between the second derivative of cluster means in terms of L2 norm distance.
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Moreover, as an extension to previous research, we pro-

vide a detailed physical interpretation of the derived clusters

facilitated by extensive data on the IOPs and concentrations

of color-forming biogeochemical constituents. IOP data

allowed a more detailed characterization of the optical clus-

ters and provided reference subsets. However, we recognize

that different instruments, methods, and protocols have

been utilized for the measurement of optical and biogeo-

chemical parameters. Consequently, some of the variability

observed in the Rrs(k) spectra will have arisen from different

instrumentations and data collection and processing meth-

odologies. In practice, biogeooptical data covering such a

wide range of ecosystem scales are scarce, and measurement

protocols have often been locally refined, modified, and

optimized. It may be expected that the continued contribu-

tion of in situ observations to community databases such as

LIMNADES and SeaBASS will lead to a gradual convergence

of methodologies and a reduction in the associated uncer-

tainties on in situ radiometric measurements.

Inland waters OWTs

The classification of inland waters Rrs(k) revealed 13 differ-

ent optical clusters (Figs. 4, 6). The categorization of these

clusters to OWTs was subsequently based on in-water infor-

mation on absorption coefficients (i.e., Figs. 10, 11) and bio-

geochemical properties (i.e., Figs. 8, 9). Table 4 provides a

brief description of each OWT. PC and ratio of PC to Chl a

(Simis et al. 2005) indicated the presence and relative abun-

dance of cyanobacteria in an OWT. This is of particular

interest for the monitoring of cyanobacteria blooms.

OWT1 represents waters with extremely high concentra-

tions of Chl a, PC, and high Rrs(k) in the red to near-infrared

region of the spectrum indicating high abundance of cyano-

bacteria near or at the water surface. High PC concentrations

(6953.3 6 9778.9 mg m23) and ratios of PC to Chl a above 1

are also indicative of high abundance of cyanobacteria in

this OWT. It is not uncommon to find extremely high con-

centrations of pigments and vegetation-like Rrs(k) spectra

due to shallow light penetration (and therefore limited water

absorption) in inland and coastal waters (Kutser et al. 2012).

For all spectra pooled into OWT1, we observed an Rrs(k) peak

close to 655 nm. This has been suggested to be a combined

effect of high Chl a and PC absorption either side of the

peak (Kudela et al. 2015) and could also be associated with

sun-induced autofluorescence of phycobilipigments. aNAP

while high, is largely masked by phytoplankton absorption,

suggesting dominance of living material over detritus and

mineral particles, and masking of aCDOM influences on the

spectrum due to a short light path, similar to the masking of

the absorption by water.

OWT2 was the most common case in our dataset, show-

ing diversity in reflectance shape with peaks at regions

(565 nm, 645 nm, and 695 nm) where particles scatter light

(Gitelson et al. 2000; Doxaran et al. 2009) and where peaks

where bounded by pigment absorption maxima (Kirk 1994).

In terms of the absorption budget at the blue wavelengths,

OWT2 is located close to the center of the ternary plot

which indicates that aCDOM and aNAP over aph were contrib-

uting almost equally to non-water absorption, while the

high SCDOM (400–700) suggests the dissolved fraction was

dominated by terrestrial humic acids (Yacobi et al. 2003;

Zhang et al. 2005; Fichot and Benner 2012).

OWT3 denotes clear waters characterized by high trans-

parency and relatively low concentrations of water constitu-

ents that do not co-vary. Remote sensing applications could

be challenging in these waters due to the lack of diagnostic

features while still providing the optical complexity that

invalidates the use of blue-green ratio ocean chlorophyll

algorithms. Specific absorption of phytoplankton and NAP

in this OWT was generally high and in line with values

recorded in coastal areas (e.g., Tilstone et al. 2012).

Table 4. Dominant characteristics of OWTs in inland waters.

OWT Dominant characteristics

OWT1 Hypereutrophic waters with scum of cyanobacterial bloom and vegetation-like Rrs

OWT2 Common case waters with diverse reflectance shape and marginal dominance of pigments and CDOM over inorganic suspended particles

OWT3 Clear waters

OWT4 Turbid waters with high organic content

OWT5 Sediment-laden waters

OWT6 Balanced effects of optically active constituents at shorter wavelength

OWT7 Highly productive waters with high cyanobacteria abundance and elevated reflectance at red/near-infrared spectral region

OWT8 Productive waters with cyanobacteria presence and with Rrs peak close to 700 nm

OWT9 Optically neighboring to OWT2 waters but with higher Rrs at shorter wavelengths

OWT10 CDOM-rich waters

OWT11 Waters high in CDOM with cyanobacteria presence and high absorption efficiency by NAP

OWT12 Turbid, moderately productive waters with cyanobacteria presence

OWT13 Very clear blue waters
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OWT4 represents turbid waters with moderate concentra-

tions of Chl a, PC, CDOM, and dominance of aNAP com-

bined with high aph variability at the shorter wavelengths.

Specific absorption of NAP of OWT4 was substantially high.

Using the available data and reported information of the

sites categorized in this OWT (Dall’Olmo and Gitelson 2006;

Matthews and Bernard 2013), it can be deduced that the

increased a*NAP(442) is related to high organic content of

TSM (Ferrari and Dowell 1998; Babin et al. 2003).

OWT5 shows the brightly reflective nature of sediment-

laden waters with high reflectance across a wide range of the

spectrum. Similar reflectance spectra are described in highly

turbid aquatic systems (Dekker 1993; Ruddick et al. 2006;

Schalles 2006). Sites belonging to this optical type were

mainly shallow floodplain (e.g., Amazon) and lowland lakes

(e.g., Taihu) or rivers (e.g., Missouri). The ISM contribution

to TSM in these waters is high (generally above 70% and on

several occasions up to 100%), while aNAP(442) is noticeably

high and NAP is often the dominant component of light

absorption. The dominance of particles of mineral origin is

likely to be related to the observed low aNAP(442) : ISM

(mean 5 0.0736 m2 g21, N 5 109) values (Mikkelsen 2002).

OWT6 includes waters with balanced effects of optically

active constituents to the absorption budget. This OWT

pooled samples with relatively high concentrations of Chl a

and PC and equal contributions of CDOM, phytoplankton,

and NAP to absorption at blue wavelengths. Relatively high

values of PC (62.5 6 51.21 mg m23) and PC to Chl a ratio

(1.4 6 0.9) reveal a significant presence of cyanobacteria in

this OWT.

OWT7 delineates waters with particularly high values of

Chl a concentrations and cyanobacteria abundances

(PC : Chl a: 1.9 6 0.8 and PC: 733.4 6 394.1 mg m23) and

high Rrs(k) at red/near-infrared spectral region (albeit lower

than OWT1). In contrast to OWT1, OWT7 exhibits a pro-

nounced reflectance peak around 700 nm. aph dominated

the absorption budget at 442 nm while aCDOM was high but

very variable.

OWT8 is characterized by elevated concentrations of

water constituents and especially of Chl a and accessory pig-

ment PC (cyanobacteria presence) is also the main character-

istic of OWT8. Nevertheless, Chl a and PC levels are lower

when compared to OWT1 and OWT7, resulting in differ-

ences in Rrs(k) amplitude and shape particularly in the red

and near-infrared parts of the spectrum. In this context,

Rrs(k) appears lower at this spectral region while the reflec-

tance peak is closer to 700 nm.

OWT9 shows similar spectra to those of OWT2 with an

absence of a well-defined peak in the red to near-infrared

region and increased non-standardized and standardized

Rrs(k) between 500 nm and 600 nm. Reflectance at shorter

wavelengths was generally higher in OWT9. Optically active

compounds in these waters were at similar concentrations to

those observed in OWT2.

OWT10 differed from any of the other optical categories

in having considerable lower reflectance from 400 nm to

600 nm with no discrete peaks and troughs in this part of

the spectrum. However, a Rrs(k) peak is noticeable near

700 nm. OWT10 grouped data collected from rivers

and lakes with markedly higher concentrations of CDOM,

which has a strong absorption effect at the shorter

wavelengths<500 nm (Kirk 1994; Del Vecchio and Blough

2004). Similar spectra have been previously reported in

CDOM-rich environments (e.g., Kallio et al. 2001).

Str€ombeck and Pierson (2001) have shown that CDOM, at

high concentrations, can significantly absorb light even in

the red region.

OWT11 appears typical for inland waters with presence of

cyanobacteria, high a*NAP(442) and high concentrations of

CDOM. Reflectance spectra of this OWT appear with clearly

observable but flattened peaks between 550 nm and 700 nm

and with high red to blue ratios. The green maximum is sup-

pressed and shifted to longer wavelengths due to strong

CDOM absorption.

OWT12 represents turbid, moderately productive waters

with cyanobacteria presence. Rrs(k) spectral shapes resemble

those of OWT11 but with a shorter wavelength of the green

maximum while values are higher in the blue and lower

from 580 nm to 720 nm.

Finally, OWT13 shows typical clear blue waters with high

reflectance at shorter wavelengths and low reflectance values

in the red region of the spectra, similar to clear oceanic

waters (e.g., Cannizzaro and Carder 2006). This OWT was

poorly represented in Dataset-I. In general, there is a scarcity

of observations below 3 mg m23 of Chl a (14%) or below

3 mg L21 of TSM (7%) in Dataset-I which reflects the recent

focus of research toward eutrophic lakes and reservoirs with

harmful algal blooms.

Relationships among optical clusters in inland and

coastal waters

Synthesis and analysis of datasets coming from both

inland and coastal waters provided a glimpse of the optical

proximity between systems with a diverse range of proper-

ties. The results highlight common as well as unique spectral

characteristics found in these waters, supporting a move

toward an integrated optical classification framework for

inland and coastal systems. This could be of great help espe-

cially in studies of multiple-component dynamic aquatic sys-

tems (Tyler et al. 2016) and global climatic trends.

Classification of all available data led to 21 clusters of reflec-

tance spectra (Fig. 7), many of which contained data from

inland and coastal systems that importantly demonstrates a

continuum of OWTs that extends across system boundaries.

Previous related research (Moore et al. 2001, 2009, 2014;

Reinart et al. 2003; Lubac and Loisel 2007; Le et al. 2011;

M�elin et al. 2011; Spyrakos et al. 2011; Vantrepotte et al.

2012; Tilstone et al. 2012; M�elin and Vantrepotte 2015; Shen
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et al. 2015; Ye et al. 2016) has suggested a substantially

smaller number of optical clusters but these studies were pri-

marily conducted at regional scales where sample sizes and

the global representativeness of waterbodies considered

might have limited the resolution of OWTs. Sun et al. (2012,

2014) suggested a different approach for optical classification

of aquatic systems based on the normalized trough depth at

675 nm and data from turbid and productive waterbodies.

This approach could be extremely useful especially for the

retrieval of Chl a but its applicability to other environments

included here (e.g., clear waters, high in aCDOM waters) needs

to be proven.

Many of the clusters described in these previous studies

are represented in Figs. 4–7. Moreover, here we have consid-

ered waters with extreme scattering and/or absorbing proper-

ties, which have typically been omitted from previous

optical classification schemes as outliers. In some cases, sur-

face waters with extreme optical properties were found to

form discretely identifiable optical clusters (e.g., cluster I3

and I10). The current analyses and results show a greater

number of clusters in inland than in coastal and open-sea

systems. This is, at least in part, explained by the larger size

and geographical and seasonal coverage of the inland water

dataset. However, given the diversity in inland waters, it is

not unreasonable to suggest that these system could also

comprise a larger portion of the optical diversity of natural

waters. Despite these differences, the cluster analysis per-

formed here has shown that some optical clusters are com-

mon to both inland and coastal waters. The phylogenetic

tree of Fig. 12 represents the similarity of the second deriva-

tives of all cluster means based on L2 norm distances and

identified seven major groups. In parallel, it provided useful

information regarding the parts of the spectra responsible for

the observed similarities/dissimilarities between the clusters.

These principally concern Rrs(k) peak shifts, changes in the

ratio of blue to green or red and features associated to acces-

sory phytoplankton pigments. Such information should be

considered when designing future EO missions.

Implications for implementation to satellite imagery

The scope of this work was to identify distinct optical

clusters and suggest OWTs for natural waters based on in

situ data. Clusters were defined based on hyperspectral Rrs(k)

but these can be resampled to any sensor spectral resolution

to assess the capability of differentiating clusters from EO

data. In order to broadly evaluate the consistency of cluster-

ing results with respect to available EO satellite sensor wave-

bands, we performed a preliminary analysis to test the

applicability of the approach. This included a comparison

between the output of a spectral matching approach applied

to multispectral sensor data simulated from in situ Rrs(k) and

the above mentioned clusters identified in the in situ datasets.

Consistency was expressed as agreement between the

dominant cluster identified by spectral matching to the bands

of the medium resolution imaging spectrometer (MERIS) and

the k-means output where hyperspectral data were used. Val-

ues of 1 indicate perfect agreement while zero indicates no

agreement between identified clusters. MERIS was chosen as

the optimal sensor for this investigation due to its long cata-

logue of ocean color images (2002–2012) with a spatial resolu-

tion of 300 m, making it useful for coastal and inland water

applications. However, similar results may be attained with

alternative sensors such as ocean land colour instrument

(OLCI) on Sentinel-3 and to some extent moderate resolution

imaging spectroradiometer (MODIS). Different strategies are

available to accomplish cluster assignment of satellite-derived

spectra, but we followed the approach described in Moore

et al. (2014) and M�elin and Vantrepotte (2015) that has

already been implemented in the ESA Ocean Color-CCI

project.

Spectra were standardized by dividing by the spectrum

integral, which in every case led to substantial improvement

in the value of cluster memberships. For the 13 clusters iden-

tified in Dataset-I, the cluster membership agreement was

0.85. However, in some cases, the differences in class mem-

bership between the top and second ranking cluster were

negligible. When we considered shared top ranking for dif-

ferences less than 0.001 in the membership between top and

second ranking clusters, a perfect agreement was achieved.

When considering spectra from coastal environments, mem-

bership agreement was lower (0.65). Agreement was

improved with the removal of spectral bands between

700 nm and 800 nm prior to operation of the spectral

matching routine. While encouraging, further refinement of

the method is necessary to justify the classification scheme

when all data are considered (21 clusters). Given that the

application of this scheme on satellite imagery is sensitive to

the performance of atmospheric correction methods, the

selection of spectral bands must be exercised with caution.

We anticipate that residual errors from incomplete atmo-

spheric correction unrepresented in the OWT spectra and

partition inefficiencies can result in spectra with zero or very

low membership values. These spectra could be used to pro-

vide a better understanding of the representativeness of

OWT and the limitations of atmospheric correction models

and clustering methods.

Concluding remarks

With increased interest in monitoring aquatic systems

across wide temporal and spatial scales using remote sensing

data, reliable OWT classification approaches are essential to

deal with the optically diverse nature of aquatic systems,

and to optimize the selection of atmospheric correction and

water constituent algorithms. Through the use of a compre-

hensive dataset and the development of an elegant but

robust approach for the classification of the in situ
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hyperspectral measurements, we expect to better understand

the variability of OWTs across inland and coastal waters and

provide a framework to support global change research in

coming years. Our methods and results can be used to iden-

tify OWT-specific technological and modeling requirements

for remote sensing applications and highlight gaps in knowl-

edge and data needs. In this regard, we note the rarity of

particulate scattering and backscattering data and of stan-

dard protocols for radiometric measurements and data proc-

essing. Application of this approach to satellite imagery will

require careful consideration of these confounding factors as

well as the influence of uncertainties associated with atmo-

spheric correction on the reflectance signal. Public access to

cluster spectral means and covariance matrices are provided

through the web page http://www.globolakes.ac.uk/.
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