65 research outputs found

    Role of CD5/CD5L interactions in the homeostasis of regulatory lymphocyte subpopulations and the control of autoimmune disorders

    Get PDF
    Resumen del trabajo presentado al: "6th European Workshop on Immune-Mediated Inflammatory Diseases" celebrado en Niza (Francia) del 23 al 25 de noviembre de 2011.-- et al.Peer Reviewe

    Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa

    Get PDF
    Mounting evidence supports the importance of the intestinal epithelial barrier and its permeability both in physiological and pathological conditions. Conventional in vitro models to evaluate intestinal permeability rely on the formation of tightly packed epithelial monolayers grown on hard substrates. These two-dimensional (2D) models lack the cellular and mechanical components of the non-epithelial compartment of the intestinal barrier, the stroma, which are key contributors to the barrier permeability in vivo. Thus, advanced in vitro models approaching the in vivo tissue composition are fundamental to improve precision in drug absorption predictions, to provide a better understanding of the intestinal biology, and to faithfully represent related diseases. Here, we generate photo-crosslinked gelatine methacrylate (GelMA) - poly(ethylene glycol) diacrylate (PEGDA) hydrogel co-networks that provide the required mechanical and biochemical features to mimic both the epithelial and stromal compartments of the intestinal mucosa, i.e., they are soft, cell adhesive and cell-loading friendly, and suitable for long-term culturing. We show that fibroblasts can be embedded in the GelMA-PEGDA hydrogels while epithelial cells can grow on top to form a mature epithelial monolayer that exhibits barrier properties which closely mimic those of the intestinal barrier in vivo, as shown by the physiologically relevant transepithelial electrical resistance (TEER) and permeability values. The presence of fibroblasts in the artificial stroma compartment accelerates the formation of the epithelial monolayer and boosts the recovery of the epithelial integrity upon temporary barrier disruption, demonstrating that our system is capable of successfully reproducing the interaction between different cellular compartments. As such, our hydrogel co-networks offer a technologically simple yet sophisticated approach to produce functional three-dimensional (3D) in vitro models of epithelial barriers with epithelial and stromal cells arranged in a spatially relevant manner and near-physiological functionality

    LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome

    Get PDF
    BACKGROUND: LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. DESIGN AND METHODS: We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. RESULTS: B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%-87.1%) vs. 25.8% (10.9%-40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%-94.2%) vs. 63.0% (46.1%-79.9%) (P= 0.043). CONCLUSIONS: Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    Transgenic Expression of Soluble Human CD5 Enhances Experimentally-Induced Autoimmune and Anti-Tumoral Immune Responses

    Get PDF
    CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L) of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EÎŒTg), expressing a circulating soluble form of human CD5 (shCD5) as a decoy to impair membrane-bound CD5 function. These shCD5EÎŒTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE), as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma). This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+), and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EÎŒTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Neuromedin U alters bioenergetics and expands the cancer stem cell phenotype in HER2-positive breast cancer

    No full text
    Neuromedin U (NmU) is a neuropeptide belonging to the neuromedin family. Recently, we reported a significant association between NmU and breast cancer, particularly correlating with increased aggressiveness, resistance to HER2?targeted therapies and overall significantly poorer outcome for patients, although the mechanism through which it exerts this effect remained unexplained. Investigating this, here we found that ectopic over?expression of NmU in HER2?positive breast cancer cells induced aberrant metabolism, with increased glycolysis, likely due to enhanced pyruvate dehydrogenase kinase activity. Similar results were observed in HER2?targeted drug?resistant cell variants, which we had previously shown to display increased levels of NmU. Overexpression of NmU also resulted in upregulation of epithelial?mesenchymal transition markers and increased IL?6 secretion which, together with aberrant metabolism, have all been associated with the cancer stem cell (CSC) phenotype. Flow cytometry experiments confirmed that NmU?overexpressing and HER2?targeted drug?resistant cells showed an increased proportion of cells with CSC phenotype (CD44+/CD24?). Taken together, our results report a new mechanism of action for NmU in HER2?overexpressing breast cancer that enhances resistance to HER2?targeted drugs through conferring CSC characteristics and expansion of the CSC phenotype
    • 

    corecore