53 research outputs found

    EVENT STUDY : REAKSI PASAR MODAL SEBELUM DAN SESUDAH ADANYA COVID-19 (Studi Pada Perusahaan Non-Perbankan Yang Terdaftar Di BEI Sebagai Anggota LQ45)

    Get PDF
    This study aims to test whether there are differences in the average Abnormal Return and Trading Volume Activity before and after the Covid-19. The population in this study are companies listed on the LQ-45 Index. The sample used in this study is a non-banking company listed on the LQ-45 Index. The sampling technique used purposive sampling method. Data collection is done by documenting the required data on the capital market website. The data analysis technique used is the normality test using Kolmogorov-Smirnov and hypothesis testing using the Wilcoxon Signed rank test. The results of this study indicate that there are significant differences in the average abnormal return and trading volume activity before and after the presence of Covid-19. Which is addressed with a significant value <0.05

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    The COSMOS-Web ring: in-depth characterization of an Einstein ring lensing system at z~2

    Full text link
    Aims. We provide an in-depth analysis of the COSMOS-Web ring, an Einstein ring at z=2 that we serendipitously discovered in the COSMOS-Web survey and possibly the most distant lens discovered to date. Methods. We extract the visible and NIR photometry from more than 25 bands and we derive the photometric redshifts and physical properties of both the lens and the source with three different SED fitting codes. Using JWST/NIRCam images, we also produce two lens models to (i) recover the total mass of the lens, (ii) derive the magnification of the system, (iii) reconstruct the morphology of the lensed source, and (iv) measure the slope of the total mass density profile of the lens. Results. The lens is a very massive and quiescent (sSFR < 10^(-13) yr-1) elliptical galaxy at z = 2.02 \pm 0.02 with a total mass Mtot(<thetaE) = (3.66 \pm 0.36) x 10^11 Msun and a stellar mass M* = (1.37 \pm 0.14) x 10^11 Msun. Compared to SHMRs from the literature, we find that the total mass is consistent with the presence of a DM halo of mass Mh = 1.09^(+1.46)_(-0.57) x 10^13 Msun. In addition, the background source is a M* = (1.26 \pm 0.17) x 10^10 Msun star-forming galaxy (SFR=(78 \pm 15) Msun/yr) at z = 5.48 \pm 0.06. Its reconstructed morphology shows two components with different colors. Dust attenuation values from SED fitting and nearby detections in the FIR also suggest it could be partially dust-obscured. Conclusions. We find the lens at z=2. Its total, stellar, and DM halo masses are consistent within the Einstein ring, so we do not need any unexpected changes in our description of the lens (e.g. change its IMF or include a non-negligible gas contribution). The most likely solution for the lensed source is at z = 5.5. Its reconstructed morphology is complex and highly wavelength dependent, possibly because it is a merger or a main sequence galaxy with a heterogeneous dust distribution.Comment: 16 pages, submitted to A&

    Uncovering a Massive z~7.65 Galaxy Hosting a Heavily Obscured Radio-Loud QSO Candidate in COSMOS-Web

    Full text link
    In this letter, we report the discovery of the highest redshift, heavily obscured, radio-loud QSO candidate selected using JWST NIRCam/MIRI, mid-IR, sub-mm, and radio imaging in the COSMOS-Web field. Using multi-frequency radio observations and mid-IR photometry, we identify a powerful, radio-loud (RL), growing supermassive black hole (SMBH) with significant spectral steepening of the radio SED (f1.32GHz2f_{1.32 \mathrm{GHz}} \sim 2 mJy, q24μm=1.1q_{24\mu m} = -1.1, α1.323GHz=1.2\alpha_{1.32-3\mathrm{GHz}}=-1.2, Δα=0.4\Delta \alpha = -0.4). In conjunction with ALMA, deep ground-based observations, ancillary space-based data, and the unprecedented resolution and sensitivity of JWST, we find no evidence of QSO contribution to the UV/optical/NIR data and thus infer heavy amounts of obscuration (NH>1023_{\mathrm{H}} > 10^{23} cm2^{-2}). Using the wealth of deep UV to sub-mm photometric data, we report a singular solution photo-z of zphotz_\mathrm{phot} = 7.650.3+0.4^{+0.4}_{-0.3} and estimate an extremely massive host-galaxy (logM=11.92±0.06M\log M_{\star} = 11.92 \pm 0.06\,\mathrm{M}_{\odot}). This source represents the furthest known obscured RL QSO candidate, and its level of obscuration aligns with the most representative but observationally scarce population of QSOs at these epochs.Comment: Submitted to ApJL, Comments welcom

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    The COSMOS-Web ring: In-depth characterization of an Einstein ring lensing system at z ∼ 2

    Get PDF
    Aims. We provide an in-depth analysis of the COSMOS-Web ring, an Einstein ring at z ≈ 2 that we serendipitously discovered during the data reduction of the COSMOS-Web survey and that could be the most distant lens discovered to date.Methods. We extracted the visible and near-infrared photometry of the source and the lens from more than 25 bands. We combined these observations with far-infrared detections to study the dusty nature of the source and we derived the photometric redshifts and physical properties of both the lens and the source with three different spectral energy distribution (SED) fitting codes. Using JWST/NIRCam images, we also produced two lens models to (i) recover the total mass of the lens, (ii) derive the magnification of the system, (iii) reconstruct the morphology of the lensed source, and (iv) measure the slope of the total mass density profile of the lens.Results. We find the lens to be a very massive elliptical galaxy at z = 2.02 ± 0.02 with a total mass within the Einstein radius of Mtot(<θEin = (3.66 ± 0.36) × 1011 M⊙ and a total stellar mass of M⋆ = 1.37−0.11+0.14 × 1011 M⊙. We also estimate it to be compact and quiescent with a specific star formation rate below 10−13 yr. Compared to stellar-to-halo mass relations from the literature, we find that the total mass of the lens within the Einstein radius is consistent with the presence of a dark matter (DM) halo of total mass Mh = 1.09−0.57+1.46 × 1013 M⊙. In addition, the background source is a M⋆ = (1.26 ± 0.17) × 1010 M⊙ star-forming galaxy (SFR ≈ (78 ± 15) M⊙ yr) at z = 5.48 ± 0.06. The morphology reconstructed in the source plane shows two clear components with different colors. Dust attenuation values from SED fitting and nearby detections in the far infrared also suggest that the background source could be at least partially dust-obscured.Conclusions. We find the lens at z ≈ 2. Its total, stellar, and DM halo masses are consistent within the Einstein ring, so we do not need any unexpected changes in our description of the lens such as changing its initial mass function or including a non-negligible gas contribution. The most likely solution for the lensed source is at z ≈ 5.5. Its reconstructed morphology is complex and highly wavelength dependent, possibly because it is a merger or a main sequence galaxy with a heterogeneous dust distribution

    Global economic burden of unmet surgical need for appendicitis

    Get PDF
    Background: There is a substantial gap in provision of adequate surgical care in many low-and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods: Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results: Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion: For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems

    Get PDF
    Conclusions: We compare for the first time the sRNA profile of four different tissues, including source, sink and conductive (phloem) tissues, in two plant-virus pathosystems. Our results indicate that antiviral silencing machinery in melon and cucumber acts mainly through DCL4. Upon infection, the total sRNA pattern in phloem remains unchanged in contrast to the rest of the analyzed tissues indicating a certain tissue-tropism to this polulation. Independently of the accumulation level of the vsRNAs both viruses were able to modulate the host sRNA pattern.We thank Dr A. Niehl for critical reading and helpful comments on the manuscript. This work was funded by a supporting program for the research from the Universidad Politecnica de Valencia (PAID-05-10), a grant BIO2011-25018 from the Spanish granting agency Direccion General de Investigacion Cientifica and the PROMETEO program 2011/003 from the Generalitat Valenciana. MCH is the recipient of a contract from JAE-DOC program of the CSIC, JAN is the recipient of a postdoctoral contract from the Ministerio de Educacion y Ciencia of Spain.Herranz Gordo, MDC.; Navarro Bohigues, JA.; Sommen, E.; Pallás Benet, V. (2015). Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems. BMC Genomics. 16:1-15. https://doi.org/10.1186/s12864-015-1327-5S11516Pumplin N, Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol. 2013;11(11):745–60.Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006;22(5):268–80.Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108.Ciaudo C, Jay F, Okamoto I, Chen CJ, Sarazin A, Servant N, et al. RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells. PLoS Genet. 2013;9(11):e1003791.Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell. 2007;130(3):413–26.Szittya G, Moxon S, Pantaleo V, Toth G, Rusholme Pilcher RL, Moulton V, et al. Structural and functional analysis of viral siRNAs. PLoS Pathog. 2010;6(4):e1000838.Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology. 2009;392(2):203–14.Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136(4):669–87.Liu Q, Feng Y, Zhu Z. Dicer-like (DCL) proteins in plants. Funct Integr Genomics. 2009;9(3):277–86.Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet. 2006;38(6):721–5.Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, et al. The evolution and diversification of Dicers in plants. FEBS Lett. 2006;580(10):2442–50.Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science. 2006;313(5783):68–71.Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 2006;34(21):6233–46.Bouche N, Lauressergues D, Gasciolli V, Vaucheret H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 2006;25(14):3347–56.Moissiard G, Voinnet O. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci U S A. 2006;103(51):19593–8.Qu F, Ye X, Morris TJ. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A. 2008;105(38):14732–7.Vaucheret H. Plant ARGONAUTES. Trends Plant Sci. 2008;13(7):350–8.Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol. 2008;9(1):22–32.Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 2008;13(7):317–28.Palauqui JC, Elmayan T, Pollien JM, Vaucheret H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 1997;16(15):4738–45.Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, et al. A systemic small RNA signaling system in plants. Plant Cell. 2004;16(8):1979–2000.Buhtz A, Pieritz J, Springer F, Kehr J. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol. 2010;10:64.Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 2008;53(5):739–49.Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PM. Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.). BMC Plant Biol. 2011;11:36.Pallas V, Gomez G. Phloem RNA-binding proteins as potential components of the long-distance RNA transport system. Frontiers in Plant Science. 2013;4:130.Tournier B, Tabler M, Kalantidis K. Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. Plant J. 2006;47(3):383–94.Hamilton A, Voinnet O, Chappell L, Baulcombe D. Two classes of short interfering RNA in RNA silencing. EMBO J. 2002;21(17):4671–9.Voinnet O. MicroRNA and autophagy--C. elegans joins the crew. EMBO Rep. 2013;14(6):485–7.Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, et al. Small RNA duplexes function as mobile silencing signals between plant cells. Science. 2010;328(5980):912–6.Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104(37):14741–6.Silva TF, Romanel EA, Andrade RR, Farinelli L, Osteras M, Deluen C, et al. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus. BMC Mol Biol. 2011;12:40.Martinez G, Donaire L, Llave C, Pallas V, Gomez G. High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem. Mol Plant Pathol. 2010;11(3):347–59.Donaire L, Barajas D, Martinez-Garcia B, Martinez-Priego L, Pagan I, Llave C. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol. 2008;82(11):5167–77.Qi X, Bao FS, Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One. 2009;4(3):e4971.Pantaleo V, Saldarelli P, Miozzi L, Giampetruzzi A, Gisel A, Moxon S, et al. Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology. 2010;408(1):49–56.Lin KY, Cheng CP, Chang BC, Wang WC, Huang YW, Lee YS, et al. Global analyses of small interfering RNAs derived from Bamboo mosaic virus and its associated satellite RNAs in different plants. PLoS One. 2010;5(8):e11928.Navarro B, Pantaleo V, Gisel A, Moxon S, Dalmay T, Bisztray G, et al. Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLoS One. 2009;4(11):e7686.Martin R, Arenas C, Daros JA, Covarrubias A, Reyes JL, Chua NH. Characterization of small RNAs derived from Citrus exocortis viroid (CEVd) in infected tomato plants. Virology. 2007;367(1):135–46.St-Pierre P, Hassen IF, Thompson D, Perreault JP. Characterization of the siRNAs associated with peach latent mosaic viroid infection. Virology. 2009;383(2):178–82.Di Serio F, Gisel A, Navarro B, Delgado S, de Alba AE M, Donvito G, et al. Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: implications for their genesis and for pathogenesis. PLoS One. 2009;4(10):e7539.Li R, Gao S, Hernandez AG, Wechter WP, Fei Z, Ling KS. Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS One. 2012;7(5):e37127.Hu Q, Hollunder J, Niehl A, Korner CJ, Gereige D, Windels D, et al. Specific impact of tobamovirus infection on the Arabidopsis small RNA profile. PLoS One. 2011;6(5):e19549.Hibi T, Furuki I. Melon Necrotic Spot Virus. In: CMI: AAB Descriptions of Plants Viruses N° 302. Kew, UK: Commonwealth Mycological Institute; 1985.Riviere CJ, Rochon DM. Nucleotide sequence and genomic organization of melon necrotic spot virus. J Gen Virol. 1990;71(Pt 9):1887–96.Diaz JA, Nieto C, Moriones E, Truniger V, Aranda MA. Molecular characterization of a Melon necrotic spot virus strain that overcomes the resistance in melon and nonhost plants. Mol Plant Microbe Interact. 2004;17(6):668–75.Navarro JA, Genoves A, Climent J, Sauri A, Martinez-Gil L, Mingarro I, et al. RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology. 2006;356(1–2):57–67.Genoves A, Navarro JA, Pallas V. A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology. 2009;395(1):133–42.Genoves A, Navarro JA, Pallas V. The Intra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway. Mol Plant Microbe Interact. 2010;23(3):263–72.Serra-Soriano M, Pallas V, Navarro JA. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. Plant J. 2014;77(6):863–79.Genoves A, Navarro JA, Pallas V. Functional analysis of the five melon necrotic spot virus genome-encoded proteins. J Gen Virol. 2006;87(Pt 8):2371–80.Pallas V, Aparicio F, Herranz MC, Amari K, Sanchez-Pina MA, Myrta A, et al. Ilarviruses of Prunus spp.: a continued concern for fruit trees. Phytopathology. 2012;102(12):1108–20.Pallas V, Aparicio F, Herranz MC, Sanchez-Navarro JA, Scott SW. The molecular biology of ilarviruses. Adv Virus Res. 2013;87:139–81.Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007;3:12.Blevins T, Rajeswaran R, Aregger M, Borah BK, Schepetilnikov M, Baerlocher L, et al. Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res. 2011;39(12):5003–14.Takeda A, Tsukuda M, Mizumoto H, Okamoto K, Kaido M, Mise K, et al. A plant RNA virus suppresses RNA silencing through viral RNA replication. EMBO J. 2005;24(17):3147–57.Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjarvi G. Suppression of RNA interference by adenovirus virus-associated RNA. J Virol. 2005;79(15):9556–65.Himeno M, Maejima K, Komatsu K, Ozeki J, Hashimoto M, Kagiwada S, et al. Significantly low level of small RNA accumulation derived from an encapsidated mycovirus with dsRNA genome. Virology. 2010;396(1):69–75.Aparicio F, Vilar M, Perez-Paya E, Pallas V. The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA. Virology. 2003;313(1):213–23.Ruiz-Ruiz S, Navarro B, Gisel A, Pena L, Navarro L, Moreno P, et al. Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol. 2011;75(6):607–19.Folimonova SY, Folimonov AS, Tatineni S, Dawson WO. Citrus tristeza virus: survival at the edge of the movement continuum. J Virol. 2008;82(13):6546–56.Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology. 2009;388(1):1–7.Karyeija RF, Kreuze JF, Gibson RW, Valkonen JP. Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology. 2000;269(1):26–36.Melnyk CW, Molnar A, Bassett A, Baulcombe DC. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr Biol. 2011;21(19):1678–83.Gosalvez-Bernal B, Genoves A, Navarro JA, Pallas V, Sanchez-Pina MA. Distribution and pathway for phloem-dependent movement of Melon necrotic spot virus in melon plants. Mol Plant Pathol. 2008;9(4):447–61.Harper SJ, Cowell SJ, Robertson CJ, Dawson WO. Differential tropism in roots and shoots infected by Citrus tristeza virus. Virology. 2014;460–461:91–9.Andika IB, Kondo H, Tamada T. Evidence that RNA silencing-mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. Mol Plant Microbe Interact. 2005;18(3):194–204.Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell. 2008;133(1):116–27.Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol. 2008;49(4):493–500.Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y. Rice MicroRNA effector complexes and targets. Plant Cell. 2009;21(11):3421–35.Xu Y, Huang L, Fu S, Wu J, Zhou X. Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus. PLoS One. 2012;7(9):e46238

    Biotechnological approaches for plant viruses resistance: from general to the modern RNA silencing pathway

    Full text link
    corecore