33 research outputs found

    Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells

    Get PDF
    BACKGROUND: The retinoic acid receptor beta 2 (RARβ2) gene modulates proliferation and survival of cultured human breast cancer cells. Previously we showed that ectopic expression of RARβ2 in a mouse xenograft model prevented metastasis, even in the absence of the ligand, all-trans retinoic acid. We investigated both cultured cells and xenograft tumors in order to delineate the gene expression profiles responsible for an antimetastatic phenotype. METHODS: RNA from MDA-MB-435 human breast cancer cells transduced with RARβ2 or empty retroviral vector (LXSN) was analyzed using Agilent Human 1A Oligo microarrays. The one hundred probes with the greatest differential intensity (p < 0.004, jointly) were determined by selecting the top median log ratios from eight-paired microarrays. Validation of differences in expression was done using Northern blot analysis and quantitative RT-PCR (qRT-PCR). We determined expression of selected genes in xenograft tumors. RESULTS: RARβ2 cells exhibit gene profiles with overrepresentation of genes from Xq28 (p = 2 × 10(-8)), a cytogenetic region that contains a large portion of the cancer/testis antigen gene family. Other functions or factors impacted by the presence of exogenous RARβ2 include mediators of the immune response and transcriptional regulatory mechanisms. Thirteen of fifteen (87%) of the genes evaluated in xenograft tumors were consistent with differences we found in the cell cultures (p = 0.007). CONCLUSION: Antimetastatic RARβ2 signalling, direct or indirect, results in an elevation of expression for genes such as tumor-cell antigens (CTAG1 and CTAG2), those involved in innate immune response (e.g., RIG-I/DDX58), and tumor suppressor functions (e.g., TYRP1). Genes whose expression is diminished by RARβ2 signalling include cell adhesion functions (e.g, CD164) nutritional or metabolic processes (e.g., FABP6), and the transcription factor, JUN

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells"</p><p>BMC Cancer 2005;5():140-140.</p><p>Published online 28 Oct 2005</p><p>PMCID:PMC1283145.</p><p>Copyright © 2005 Wallden et al; licensee BioMed Central Ltd.</p>Using total RNA used in the arrays, Northern blots were probed with P-dCTP labelled RARβ2 or CTAG1 cDNA. The RARβ2 probe consists of ~1.2 kb KpnI-BamH1 digest fragment of pSG RARβ2 ([75], from Pierre Chambon). The CTAG1 probe was generated from a 463 bp reverse transcriptase PCR product that encompasses the Agilent 60-mer. Blots were sequentially probed with a cDNA for RPLP0 (36B4) as a loading and transfer control. Quantitation of relative transcript levels was normalized to RPLP0 by phosphorimaging using exposure levels within the linear range of detection, avoiding saturation. The RARβ2 mRNA includes elements transcribed from the retroviral vector [8]

    Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells"</p><p>BMC Cancer 2005;5():140-140.</p><p>Published online 28 Oct 2005</p><p>PMCID:PMC1283145.</p><p>Copyright © 2005 Wallden et al; licensee BioMed Central Ltd.</p> were probed with a 1384 bp fragment of SPP1 (see methods) or 800 bp, fragment of RPLP0 (36B4). Phosphorimaging was used for detection and quantitation. B. Western immunoblot analysis. Two independent preparations of each clonal cell line were used. Three mL of serum free-media from 3 × 10cell equivalents was immunoblotted, using a goat anti-SPP1/osteopontin polyclonal antibody (antibody and recombinant protein were a gift from Dr. CM Giachelli) and a secondary rabbit anti-goat antibody (Pierce)

    Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells-2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells"</p><p>BMC Cancer 2005;5():140-140.</p><p>Published online 28 Oct 2005</p><p>PMCID:PMC1283145.</p><p>Copyright © 2005 Wallden et al; licensee BioMed Central Ltd.</p>on of cancer antigens, tumor suppressors, and genes involved in interferon signalling. Other gene activities are suppressed through RARβ2 action: AP1, cell adhesion, and nutrient processes. All gene activities in this diagram have been confirmed by cell culture qRT-PCR. Gene names in italics (red), have also been confirmed using randomly selected xenograft primary tumors, comparing two pairs of vector control- and RARβ2-resected tumors
    corecore