188 research outputs found
NOVEL TECHNIQUES FOR IN VIVO CHARACTERIZATION OF SHORT PEPTIDES AND PROTEINS IN MEMBRANE PERMEABILIZATION AND SIGNAL TRANSDUCTION
My scientific interest is focused on the field of cellular electrical activity, ranging from the study of intracellular enzymatic processes to the characterization of new generation of drugs. For this purpose I also used the most powerful techniques of investigation, including patch-clamp technique, fluorescence imaging, and surface plasmon resonance (SPR) spectroscopy. Moreover, to shed light on complex molecular mechanisms, unconventional strategies were employed, requiring sometimes the realization of specific devices not commercially available.
In particular my PhD thesis includes two different scientific projects: the biophysical characterization of antimicrobial peptides and the modulation of visual phototransduction in vertebrate cones.
In the first project, the patch-clamp technique was employed to study the pore forming properties of synthetic cecropin-melittin hybrid peptide (CM15), alamethicin F50/5 and its synthetic analog [L-Glu(OMe)7,18,19] under strict physiological conditions. These short peptides selectively permeabilize the bacteria plasma membrane leading to their lyses and death: they are therefore a source of antibacterial molecules, and inspiration for novel and more selective drugs. I pursued this study by recording the ion current through the channels formed by these peptides, once inserted in the membrane of photoreceptor rod outer segment membrane (OS) isolated from frog retinae. The peptides were applied to (and removed from) the extracellular OS side in ~50 ms with a computer-controlled microperfusion system, so that the ion channel characteristics (as its selectivity, blockade and gating) and the dynamics of pore formation could be precisely assessed. On the basis of the electrophysiological recordings obtained, it was demonstrated that, different than alamethicins, CM15 produced voltage-independent membrane permeabilisation, repetitive peptide application caused a progressive permeabilisation increase, and no single-channel events were detected at low peptide concentrations. Collectively, these results indicate that CM15 form pores according to a toroidal model. Moreover, in order to understand the divalent-cation dependency of [L-Glu(OMe)7,18,19] binding to the lipid bilayer at the molecular level, the electrophysiological experiments were paralleled with experiments employing SPR spectroscopy. Results indicate the presence of Ca2+ in the external solution increases the probability of formation of smaller and more stable [L-Glu(OMe)7,18,19] pores. The second project of this thesis concerns the investigation of the physiological role of the neuronal calcium sensor zGCAP3 in the photrasduction cascade. This study was pursued through the simulation of an over expression and a knock-down of this protein, by delivering it, or its monoclonal antibody, into zebrafish cone cytosol, while recording their photoresponses with the patch-clamp technique. The intracellular protein delivery was attained via the patch pipette, by ejecting the proteins out of a tube inserted into the pipette lumen. A microperfusion system was employed to apply the desired exogenous molecules with a precise timing. However, the long tapered shape of the pipette shank make it very difficult to perfuse efficiently the cell with this strategy. For this reason a pressure polishing setup was assembled to enlarge the patch pipette shank, through the calibrated combination of heat and air pressure. This allowed to insert quartz or plastic tubes in the pipette lumen very close to its tip. In order to obtain a substantial and specific silencing of the zGCAP3s in zebrafish cones, surface plasmon resonance experiments were performed to allow the selection of a monoclonal antibody with strong affinity for zGCAP3 and low cross interaction with other components of the phototransduction cascade. Results showed that the perfusion with GCAP3 did not altered significantly the light response, while he anti-zGCAP3 incorporation in the cytosol caused the progressive photoresponse fall, followed by the progressive fall of saturating flash response amplitude, probably due to the progressive GC inhibition. The unexpected lack of an effect of zGCAP3 incorporation in the cone cytosol, suggests that the endogenous number of zGCAP3 is saturating, i.e. their number is equal or above the number of their target molecules (guanylate cyclase), therefore any further increase of zGAP3 in the cytosol is uneffective
Enhanced Patch-Clamp Technique to Study Antimicrobial Peptides and Viroporins, Inserted in a Cell Plasma Membrane with Fully Inactivated Endogenous Conductances
Many short peptides selectively permeabilize the bacteria plasma membrane, leading to their lyses and death: they are therefore a source of antibacterial molecules, and inspiration for novel and more selective drugs. Another class of short (<100 residues) membrane proteins called viroporins, because they are coded by viral genes, permeabilizes the membrane of susceptible cells during infection of by most animal viruses. The permeabilization leads to host cell lyses and the release of the virus mass, replicated at host cell expense, to propagate the infection. Detailed knowledge of the permeabilization properties of these proteins would allow to design, for instance, selective blockers of these pores, that would contrast the spread of the viral infection.
In this chapter, the patch-clamp technique is employed to study the mechanism of membrane permeabilization induced by the pore-forming peptides, under strict physiological conditions. This goal is achieved by recording the ion current through the channels formed by these peptides, once inserted in a cell plasma membrane. To avoid contamination by the cell membrane currents, all the endogenous current sources must be blocked. It has been found that the photoreceptor rod outer segment mechanically isolated from the retina of low vertebrates (OS) was the most suitable cell to carry on the above studies, because it was possible to fully block all its endogenous currents without using any drug (such as TTX, TEA, dihydropyridines, etc.), that could obstruct the peptide pores or interfere with the pore formation. The peptides were applied to (and removed from) the extracellular OS side in ~50 ms with a computer-controlled microperfusion system, in which every perfusion parameter (as the rate of solution flow, the temporal sequence of solution changes or the number of automatic, self-washing cycles) was controlled by a user-friendly interface. This system allowed rapid application and removal of ions, drugs and peptides on the cells with a controlled timing, so that the ion channel characteristics (as its selectivity, blockade and gating) and the dynamics of pore formation could be precisely assessed. On the basis of the electrophysiological recordings obtained with representative peptides and with selected analogs, as alamethicin F50/5, the cecoprine-mellitin hybrid peptide, and a 20-aminoacid long fragment of the viroporin poliovirus 2B, it will be shown that the membrane pore formation occurs according to the barrel and stave, toroidal, and carpet model, respectively, that are the most widely-accepted mechanisms of membrane permeabilization.
When recording large currents (produced for instance by high concentrations of peptides and/or highly permeable peptides), it is necessary to minimize series resistance, to reduce time constant of charging the cell membrane capacitance and error in membrane potential control. A second problem arises from the asymmetry of the plasma membrane: it is possible that the permeabilization properties of a particular peptide could be different depending upon the side of the membrane to which it is applied. For example, it is conceivable that viroporins are optimized to insert in the intracellular face of the plasma membrane, because they are synthesized in host cell cytosol. These two problems could be circumvented by widening the patch pipette shank, through the calibrated combination of heat and air pressure. These pipettes dramatically reduce series resistance, and allow at the same time to insert pulled quartz or plastic tubes very close to the pipette tip, making it possible the delivery of large molecules to the cytosol with a controlled timing. Finally, it is presented here a simple procedure to consistently attain seals with conventional or pressure polished pipettes, made from just one glass type, on a wide variety of cell types, isolated from different amphibian, reptilian, fish, and mammalian tissues, and on artificial membranes made with many different lipid mixtures
Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness
cAMP mediates autonomic regulation of heart rate by means of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which underlie the pacemaker current If. cAMP binding to the C-terminal cyclic nucleotide binding domain enhances HCN open probability through a conformational change that reaches the pore via the C-linker. Using structural and functional analysis, we identified a binding pocket in the C-linker of HCN4. Cyclic dinucleotides, an emerging class of second messengers in mammals, bind the C-linker pocket (CLP) and antagonize cAMP regulation of the channel. Accordingly, cyclic dinucleotides prevent cAMP regulation of If in sinoatrial node myocytes, reducing heart rate by 30%. Occupancy of the CLP hence constitutes an efficient mechanism to hinder β-adrenergic stimulation on If. Our results highlight the regulative role of the C-linker and identify a potential drug target in HCN4. Furthermore, these data extend the signaling scope of cyclic dinucleotides in mammals beyond their first reported role in innate immune system
The Physics of the B Factories
This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C
Estradiol inhibits the effects of extracellular ATP in human sperm by a non genomic mechanism of action
Steroid hormones, beside their classical genomic mechanism of action, exert rapid, non genomic effects in different cell types. These effects are mediated by still poorly characterized plasma membrane receptors that appear to be distinct from the classic intracellular receptors. In the present study we evaluated the non genomic effects of estradiol (17βE2) in human sperm and its effects on sperm stimulation by extracellular ATP, a potent activator of sperm acrosome reaction. In human sperm 17βE2 induced a rapid increase of intracellular calcium (Ca2+) concentrations dependent on an influx of Ca2+ from the extracellular medium. The monitoring of the plasma membrane potential variations induced by 17βE2 showed that this steroid induces a rapid plasma membrane hyperpolarization that was dependent on the presence of Ca2+ in the extracellular medium since it was absent in Ca2+ free-medium. When sperm were pre-incubated in the presence of the K+ channel inhibitor tetra-ethylammonium, the 17βE2 induced plasma membrane hyperpolarization was blunted suggesting the involvement of K+ channels in the hyperpolarizing effects of 17βE2. Extracellular ATP induced a rapid plasma membrane depolarization followed by acrosome reaction. Sperm pre-incubation with 17βE2 inhibited the effects of extracellular ATP on sperm plasma membrane potential variations and acrosome reaction. The effects of 17βE2 were specific since its inactive steroisomer 17αE2 was inactive. Furthermore the effects of 17βE2 were not inhibited by tamoxifen, an antagonist of the classic 17βE2 intracellular receptor
Management of the corpse with suspect, probable or confirmed COVID-19 respiratory infection \u2013 Italian interim recommendations for personnel potentially exposed to material from corpses, including body fluids, in morgue structures and during autopsy practice.
non disponibil
The Prevalence of Sarcopenia in the Elderly: How the Consumption of Protein Supplement Interacts in Individuals of a Fortaleza Institution
Introduction: Sarcopenia is a natural disturb that usually affects older people consisting in strength and muscle mass loss. Sedentary lifestyle and nutritional habits are some inducing factors. Supplementation may contribute to improvements on life quality in elders predisposed to sarcopenia. Objectives: verify the relevance of protein supplementation on life quality of elders predisposed to sarcopenia. Assess the individual's evolution along the study. Methods: protein supplementation application during 45 days on 13 elders, comparing them with 13 elders in control group without supplementation. Anthropometric measurements were performed before and after the 45 days period and evaluated for each participant, as well as their nutrition, individually. Results: We observed a improvement in some anthropometric measures, and a reduction in others, that might be explained by previous pathologies already diagnosed. Muscle mass changes were positive, according with specific reference measures. Some elders reported motor strength improvements, disposition and energy. Physical active participants showed more significant results and sedentary ones. Conclusion: positive outcomes were obtained from protein supplementation in older people, and more correlated studies are still necessary, considering the field's relevancy to longevity and overall life quality
FoxO3a Drives the Metabolic Reprogramming in Tamoxifen-Resistant Breast Cancer Cells Restoring Tamoxifen Sensitivity
Tamoxifen-resistant breast cancer cells (TamR-BCCs) are characterized by an enhanced metabolic phenotype compared to tamoxifen-sensitive cells. FoxO3a is an important modulator of cell metabolism, and its deregulation has been involved in the acquisition of tamoxifen resistance. Therefore, tetracycline-inducible FoxO3a was overexpressed in TamR-BCCs (TamR/TetOn-AAA), which, together with their control cell line (TamR/TetOn-V), were subjected to seahorse metabolic assays and proteomic analysis. FoxO3a was able to counteract the increased oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) observed in TamR by reducing their energetic activity and glycolytic rate. FoxO3a caused glucose accumulation, very likely by reducing LDH activity and mitigated TamR biosynthetic needs by reducing G6PDH activity and hindering NADPH production via the pentose phosphate pathway (PPP). Proteomic analysis revealed a FoxO3a-dependent marked decrease in the expression of LDH as well as of several enzymes involved in carbohydrate metabolism (e.g., Aldolase A, LDHA and phosphofructokinase) and the analysis of cBioPortal datasets of BC patients evidenced a significant inverse correlation of these proteins and FoxO3a. Interestingly, FoxO3a also increased mitochondrial biogenesis despite reducing mitochondrial functionality by triggering ROS production. Based on these findings, FoxO3a inducing/activating drugs could represent promising tools to be exploited in the management of patients who are refractory to antiestrogen therapy
- …
