21 research outputs found

    Break-down of the single-active-electron approximation for one-photon ionization of the B 1Σu+^1\Sigma_u^+ state of H2_2 exposed to intense laser fields

    Full text link
    Ionization, excitation, and de-excitation to the ground state is studied theoretically for the first excited singlet state B 1Σu+^1\Sigma_u^+ of H2_2 exposed to intense laser fields with photon energies in between about 3 eV and 13 eV. A parallel orientation of a linear polarized laser and the molecular axis is considered. Within the dipole and the fixed-nuclei approximations the time-dependent Schr\"odinger equation describing the electronic motion is solved in full dimensionality and compared to simpler models. A dramatic break-down of the single-active-electron approximation is found and explained to be due to the inadequate description of the final continuum states.Comment: 9 pages, 4 figure

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4 (62.3 (55.1�70.8) million) to 6.4 (58.3 (47.6�70.7) million), but is predicted to remain above the World Health Organization�s Global Nutrition Target of <5 in over half of LMICs by 2025. Prevalence of overweight increased from 5.2 (30 (22.8�38.5) million) in 2000 to 6.0 (55.5 (44.8�67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic. © 2020, The Author(s)

    Author Correction: Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017 (Nature Medicine, (2020), 26, 5, (750-759), 10.1038/s41591-020-0807-6)

    Get PDF
    An amendment to this paper has been published and can be accessed via a link at the top of the paper. © 2020, The Author(s)

    Author Correction: Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017 (Nature Medicine, (2020), 26, 5, (750-759), 10.1038/s41591-020-0807-6)

    Get PDF
    An amendment to this paper has been published and can be accessed via a link at the top of the paper. © 2020, The Author(s)

    Molecules in strong laser fields

    Get PDF
    Eine Methode zur Lösung der zeitabhängigen Schrödingergleichung (engl. time-dependent Schrödinger equation, TDSE) wurde entwickelt, welche das Verhalten der Elektronenbewegung in Molekülen beschreibt, die ultrakurzen, intensiven Laserpulsen ausgesetzt werden. Die zeitabhängigen elektronischen Wellenfunktionen werden durch eine Superposition von feldfreien Eigenzuständen beschrieben, welche auf zwei Weisen berechnet werden. Im ersten Ansatz , welcher auf Zweielektronen-Systeme wie H2_2 anwendbar ist, werden die voll korrelierten feldfreien Eigenzustände in voller Dimensionalität in einem Konfigurations-Wechselwirkungs Verfahren (engl. configuration interaction, CI) bestimmt, wobei die Einelektron-Basisfunktionen mit B-Splines beschrieben werden. Im zweiten Verfahren, welches sogar auf größere Moleküle anwendbar ist, werden die feldfreien Eigenzustände in der Näherung eines aktiven Elektrons (engl. single active electron, SAE) mit Verwendung der Dichtefunktionaltheorie (DFT) bestimmt. Im Allgemeinen kann die Methode zum Auffinden der zeitabhängigen Lösung in zwei Schritte, dem Auffinden der feldfreien Eigenzustände und einer Zeitpropagation in Abhängigkeit der Laserpuls-Parameter, unterteilt werden. Die Gültigkeit der SAE Näherung ist überprüft und die Ergebnisse für grund und erste angeregte zustand der Wasserstoff-Molekül werden vorgestellt. Die Ergebnisse für einige größere Moleküle innerhalb der SAE Angleichung werden ebenfalls gezeigt.A method for solving the time-dependent Schrödinger equation (TDSE) describing the electronic motion of the molecules exposed to very short intense laser pulses has been developed. The time-dependent electronic wavefunction is expanded in terms of a superposition of field-free eigenstates. The field-free eigenstates are calculated in two ways. In the first approach, which is applicable to two electron systems like hydrogen molecule, fully correlated field-free eigenstates are obtained in complete dimensionality using configuration-interaction calculation where the one-electron basis functions are built from B-splines. In the second approach, which is even applicable to larger molecules, the field-free eigenstates are calculated within the single-active-electron (SAE) approximation using density functional theory. In general, the method can be divided into two parts, in the first part the field-free eigenstates are calculated and then in the second part a time propagation for the laser pulse parameters is performed. Using these methods the validity of SAE approximation is tested and the results for the ground and first excited state of hydrogen molecule are presented. The results for some larger molecules within the SAE approximation are also shown

    Graphene quantum dots with visible light absorption of the carbon core: insights from single-particle spectroscopy and first principles based theory

    No full text
    Luminescent carbon nanodots (CND) are a recent addition to the family of carbon nanostructures. Interestingly, a large group of CNDs are fluorescent in the visible spectrum and possess single dipole emitters with potential applications in super-resolution microscopy, quantum information science, and optoelectronics. There is a large diversity of CND's size as well as a strong variability of edge topology and functional groups in real samples. This hampers a direct comparison of experimental and theoretical findings that is necessary to understand the unusual photophysics of these systems. Here, we derive atomistic models of finite sized (<2.5 nm) CNDs from high resolution transmission electron microscopy (HRTEM) which are studied using approximate time-dependent density functional theory. The atomistic models are found to be primarily two-dimensional (2D) and can hence be categorised as graphene quantum dots (GQD). The GQD model structures that are presented here show excitation energies in the visible spectrum matching previous single GQD level photoluminescence studies. We also present the effect of edge hydroxyl and carboxyl functional groups on the absorption spectrum. Overall, the study reveals the atomistic origin of CNDs photoluminescence in the visible range

    Performance simulation of grid-connected rooftop solar PV system for small households: A case study of Ujjain, India

    Get PDF
    Solar rooftop PV system is an attractive alternate electricity source for households. The potential of solar PV at a given site can be evaluated through software simulation tools. This study is done to assess the feasibility of grid-connected rooftop solar photovoltaic system for a household building in holy city Ujjain, India. The study focuses on the use of various simulation software, PV*SOL, PVGIS, SolarGIS and SISIFO to analyze the performance of a grid-connected rooftop solar photovoltaic system. The study assesses the energy generation, performance ratio and solar fraction for performance prediction of this solar power plant. PV*SOL demonstrates to be easy, fast, and reliable software tool for the simulation of a solar PV system
    corecore