18 research outputs found

    MUNICH v2.0: a street-network model coupled with SSH-aerosol (v1.2) for multi-pollutant modelling

    Get PDF
    A new version of a street-network model, the Model of Urban Network of Intersecting Canyons and Highways version 2.0 (MUNICH v2.0), is presented. The comprehensive aerosol model SSH-aerosol is implemented in MUNICH v2.0 to simulate the street concentrations of multiple pollutants, including secondary aerosols. The implementation uses the application programming interface (API) technology so that the SSH-aerosol version may be easily updated. New parameterisations are also introduced in MUNICH v2.0, including a non-stationary approach to model reactive pollutants, particle deposition and resuspension, and a parameterisation of the wind at roof level. A test case over a Paris suburb is presented for model evaluation and to illustrate the impact of the new functionalities. The implementation of SSH-aerosol leads to an increase of 11 % in PM10 concentration because of secondary aerosol formation. Using the non-stationary approach rather than the stationary one leads to a decrease in NO2 concentration of 16 %. The impact of particle deposition on built surfaces and road resuspension on pollutant concentrations in the street canyons is low.</p

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Understanding of the hydric functioning of vegetation in an urban park

    No full text
    MasterIn cities, airflows, radiative and water budgets are deeply modified by concrete and impervious surfaces, inducing an increase of temperature and a difficult water management. That can have negative impacts on human health especially during extreme events (heatwave, heavy rainfall or pollution peak). One solution is to re-green the cities with vegetation such as parks, trees in streets, green walls and roofs. Indeed, the vegetation transpiration and the shade produced contribute to cool the surrounding atmosphere. Nevertheless, cities are a constraining environment for vegetation especially because of higher temperatures and uncertain access to water. Our study registers in this context and focus more particularly on the trees hydric functioning in urban park. The studied site is an urban park (Jardin du palais Universitaire) located in the downtown of Strasbourg (France). The park is surrounded by buildings and composed of Tilia tomentosa Moench trees and lawn. We studied two years (2014 and 2015) of micrometeorological, vegetation and soil-related experimental data. By analyzing the climate of the two years, we identified two water-limited periods, one in the 2014 spring and another one in summer and fall 2015. We observed that in 2015, the climatic demand of the garden was higher due to a higher hydric deficit. Despite the dry conditions, the measured tree transpirations are nearly constant over the summer but we observe a higher transpiration in 2015 than in 2014, as the climatic demand increases. Regarding the lawn, we noticed a decrease of the evapotranspiration during the water-limited periods. We conclude from this experimental results analysis that the tree water stress is limited and we assume that they are able to draw in a water table which is at about 2m deep. On the contrary, the lawn which has shorter roots cannot reach this groundwater and suffers of water stress, which causes lawn death in summer 2015. To go further in our analysis, we use a numerical model that couples water and energy budget in the tree. The soil-plant-atmosphere continuum model was first design for a forest, so to take into account the fact that the park is located in a city and that we have a sparse trees canopy, we modified the radiation transfer model, the wind profile and the vegetation and soil characteristics. Besides, we modeled the groundwater with a saturated soil layer and the lawn death with a stomatal conductance decrease. Then, we compared the outputs of the model (especially the evapotranspiration) with the measurements. We observed that the inclusion of a ground water table allows a better simulation of the tree transpiration, the water table limits the drop of the leaf water potential and maintains tree transpiration even during water-limited periods. In 2015, the lawn transpiration decrease is well reproduced thanks to the reduction of the lawn stomatal conductance. Finally, we can say that the lawn is progressively dying because of the water stress, so its cooling effect is limited. On the contrary, the tree shade and transpiration are maintained improving human’s thermal comfort and reducing urban heat island

    Parametrization of Horizontal and Vertical Transfers for the Street-Network Model MUNICH Using the CFD Model Code_Saturne

    No full text
    International audienceCities are heterogeneous environments, and pollutant concentrations are often higher in streets compared with in the upper roughness sublayer (urban background) and cannot be represented using chemical-transport models that have a spatial resolution on the order of kilometers. Computational Fluid Dynamics (CFD) models coupled to chemistry/aerosol models may be used to compute the pollutant concentrations at high resolution over limited areas of cities; however, they are too expensive to use over a whole city. Hence, simplified street-network models, such as the Model of Urban Network of Intersecting Canyons and Highways (MUNICH), have been developed. These include the main physico-chemical processes that influence pollutant concentrations: emissions, transport, deposition, chemistry and aerosol dynamics. However, the streets are not discretized precisely, and concentrations are assumed to be homogeneous in each street segment. The complex street micro-meteorology is simplified by considering only the vertical transfer between the street and the upper roughness sublayer as well as the horizontal transfer between the streets. This study presents a new parametrization of a horizontal wind profile and vertical/horizontal transfer coefficients. This was developed based on a flow parametrization in a sparse vegetated canopy and adapted to street canyons using local-scale simulations performed with the CFD model Code_Saturne. CFD simulations were performed in a 2D infinite street canyon, and three streets of various aspect ratios ranging from 0.3 to 1.0 were studied with different incoming wind directions. The quantities of interest (wind speed in the street direction and passive tracer concentration) were spatially averaged in the street to compare with MUNICH. The developed parametrization depends on the street characteristics and wind direction. This effectively represents the average wind profile in a street canyon and the vertical transfer between the street and the urban roughness sublayer for a wide range of street aspect ratios while maintaining a simple formulation

    Impact of trees on gas concentrations and condensables in a 2-D street canyon using CFD coupled to chemistry modeling

    No full text
    Trees grown in streets impact air quality by influencing ventilation (aerodynamic effects), pollutant deposition (dry deposition on vegetation surfaces), and atmospheric chemistry (emissions of biogenic volatile organic compounds, BVOCs). To qualitatively evaluate the impact of trees on pollutant concentrations and assist decision-making for the greening of cities, 2-D simulations on a street in greater Paris were performed using a computational fluid dynamics tool coupled to a gaseous chemistry module. Globally, the presence of trees has a negative effect on the traffic-emitted pollutant concentrations, such as NO2 and organic condensables, particularly on the leeward side of a street. When not under low wind conditions, the impact of BVOC emissions on the formation of most condensables within the street was low owing to the short characteristic time of dispersion compared with the atmospheric chemistry. However, autoxidation of BVOC quickly forms some extremely-low volatile organic compounds, potentially leading to the formation of ultra-fine particles. Planting trees in streets with traffic is only effective in mitigating the concentration of some oxidants such as ozone (O3), which has low levels in cities regardless of this, and hydroxyl radical (OH), which may slightly lower the rate of oxidation reactions and the formation of secondary species in the street

    Parameterizing the aerodynamic effect of trees in street canyons for the street network model MUNICH using the CFD model Code_Saturne

    No full text
    International audienceAbstract. Trees provide many ecosystem services in cities such as urban heat island reduction, water runoff limitation, and carbon storage. However, the presence of trees in street canyons reduces the wind velocity in the street and limits pollutant dispersion. Thus, to obtain accurate simulations of pollutant concentrations, the aerodynamic effect of trees should be taken into account in air quality models at the street level. The Model of Urban Network of Intersecting Canyons and Highways (MUNICH) simulates the pollutant concentrations in a street network, considering dispersion and physico-chemical processes. It can be coupled to a regional-scale chemical transport model to simulate air quality over districts or cities. The aerodynamic effect of the tree crown is parameterized here through its impact on the average wind velocity in the street direction and the vertical transfer coefficient associated with the dispersion of a tracer. The parameterization is built using local-scale simulations performed with the computational fluid dynamics (CFDs) code Code_Saturne. The two-dimensional CFD simulations in an infinite street canyon are used to quantify the effect of trees, depending on the tree characteristics (leaf area index, crown volume fraction, and tree height to street height ratio) using a drag porosity approach. The tree crown slows down the flow and produces turbulent kinetic energy in the street, thus impacting the tracer dispersion. This effect increases with the leaf area index and the crown volume fraction of the trees, and the average horizontal velocity in the street is reduced by up to 68 %, while the vertical transfer coefficient by up to 23 % in the simulations performed here. A parameterization of these effects on horizontal and vertical transfers for the street model MUNICH is proposed. Existing parameterizations in MUNICH are modified based on Code_Saturne simulations to account for both building and tree effects on vertical and horizontal transfers. The parameterization is built to obtain similar tree effects (quantified by a relative deviation between the cases without and with trees) between Code_Saturne and MUNICH. The vertical wind profile and mixing length depend on leaf area index, crown radius, and tree height to street height ratio. The interaction between the trees and the street aspect ratio is also considered

    Drought effect on urban plane tree ecophysiology and its isoprene emissions

    No full text
    International audienceUrban trees emit a wide range of biogenic Volatile Organic Compounds (bVOC). Some of these bVOC, like isoprene can react with atmospheric oxidants to form secondary compounds, such as ozone (O3) and secondary organic aerosols (SOA), which have impacts on air quality and climate. In addition, isoprene emissions are strongly influenced by environmental factors and urban sites are known as stressful environment, characterized for example by water scarcity. However, little is known on the contribution of urban trees to air quality, notably during drought periods. In a semi-controlled experiment, fourteen young plane trees (Platanus x hispanica, known as a strong isoprene emitter) were grown in containers, in an urban site (at Vitry-sur-Seine, near Paris), since 2020. In June 2022, half the trees were subjected to drought by total rainfall exclusion and by withholding watering. A comprehensive characterization of tree response to drought, including plant morphology (leaf density and area), water status (i.e., leaf water potential, δ13C isotopic composition) and physiology (stomatal conductance, net photosynthesis, leaf pigment contents, stress molecular markers, chlorophyll fluorescence) analyses, was undertaken along with the characterization of bVOC emissions by an original leaf scale method (portable GC-MS coupled to a leaf chamber). All together, these parameters provided relevant information on the relation between bVOC emissions and plant morphology, its water use efficiency and photosynthetic energy conversion.Shortly after the onset of drought, the isoprene emissions of the plane trees remained unchanged even though typical responses to drought stress were observed, such as partial stomatal closure leading to a decrease in carbon assimilation. With the progression of drought stress, progressive leaf shedding occurred. When almost completely defoliated, the trees emitted lower amounts of isoprene emissions likely due to disruption of the photosynthetic energy conversion process. Despite the moderate decrease in absolute isoprene emissions rates (as expressed per dry leaf mass) induced by the drought treatment on plane trees with nearly zero gas exchange, total emissions were strongly affected because defoliation significantly reduced the total leaf area. We emphasize that this phenomenon should be taken into account in atmospheric models especially in species highly subjected to drought induced defoliation. Here, a simple parameterisation of this effect on plane tree-bVOC emissions is proposed

    Large-eddy simulations on pollutant reduction effects of road-center hedge and solid barriers in an idealized street canyon

    No full text
    International audienceThis study conducted large-eddy simulations (LES) on the pollutant reduction effects of hedge and solid barriers in a three-dimensional idealized street canyon with an aspect ratio of 0.5. The wind direction was perpendicular and oblique (45°) to the street. The results were validated with data from wind tunnel experiments. LES accurately predicted the concentration distribution in the barrier-free case and reproduced well the barrier-induced concentration reduction. In the barrier-free case, a large recirculation vortex was observed. However, the central barriers forced the recirculated airflow in the middle of the canyon and newly formed vortices near the leeward walls. The two counter-direction vortices in the hedge and solid barrier cases transported pollutants toward the center of the canyon and enhanced the vertical pollutant removal at the top of the street canyon. The hedge barrier (solid barrier) reduced spatially-averaged concentration by about 59% (45%) near the leeward wall, 64% (20%) near the windward wall, and 45% (17%) in the whole street canyon compared to the barrier-free case. The effects of leaf area density (LAD) and barrier width were further investigated under the perpendicular wind direction. Increasing the LAD or the width of the hedge barrier decreased concentration near the leeward walls but increased canyon-averaged concentration. Increasing the width of the solid barrier decreased the concentration near the leeward walls and the canyon-averaged concentration. In an oblique wind direction, the hedge and solid barriers reduced by about 30% and 60% the spatially-averaged concentration near the building walls compared to the barrier-free case
    corecore