115 research outputs found

    Genetic heterogeneity in autosomal dominant pattern dystrophy of the retina

    Full text link
    PURPOSE: Mutations in the retinal degeneration slow (RDS)/peripherin gene have been shown to be associated with pattern dystrophy of the retina (PDR) and other retinal dystrophies. The aim of our study was to confirm or exclude the RDS locus and the rhodopsin (RHO) locus as the disease causing locus in a large Swiss family affected with pattern dystrophy of the retina. MATERIALS AND METHODS: A Swiss family with 14 members across 3 generations affected with PDR was examined. Eleven living family members were investigated using 6 markers surrounding the RDS and RHO loci. RESULTS: Linkage to two possible candidate genes, the RDS gene on chromosome 6p and the rhodopsin gene on chromosome 3q, could be excluded. CONCLUSIONS: The family provides evidence for genetic heterogeneity of PDR and is in agreement with heterogeneity in other retinal dystrophies. Further investigations are in progress to map the gene causing PDR in this family

    Dynamic cultivation of human mesenchymal stem/stromal cells for the production of extracellular vesicles in a 3D bioreactor system

    Get PDF
    Purpose: 3D cell culture and hypoxia have been demonstrated to increase the therapeutic effects of mesenchymal stem/stromal cells (MSCs)-derived extracellular vesicles (EVs). In this study, a process for the production of MSC-EVs in a novel 3D bioreactor system under normoxic and hypoxic conditions was established and the resulting EVs were characterized. Methods: Human adipose-derived MSCs were seeded and cultured on a 3D membrane in the VITVOÂź bioreactor system for 7 days. Afterwards, MSC-EVs were isolated and characterized via fluorescence nanoparticle tracking analysis, flow cytometry with staining against annexin V (Anx5) as a marker for EVs exposing phosphatidylserine, as well as CD73 and CD90 as MSC surface markers. Results: Cultivation of MSC in the VITVOÂź bioreactor system demonstrated a higher concentration of MSC-EVs from the 3D bioreactor (9.1 × 109 ± 1.5 × 109 and 9.7 × 109 ± 3.1 × 109 particles/mL) compared to static 2D culture (4.2 × 109 ± 7.5 × 108 and 3.9 × 109 ± 3.0 × 108 particles/mL) under normoxic and hypoxic conditions, respectively. Also, the particle-to-protein ratio as a measure for the purity of EVs increased from 3.3 × 107 ± 1.1 × 107 particles/”g protein in 2D to 1.6 × 108 ± 8.3 × 106 particles/”g protein in 3D. Total MSC-EVs as well as CD73−CD90+ MSC-EVs were elevated in 2D normoxic conditions. The EV concentration and size did not differ significantly between normoxic and hypoxic conditions. Conclusion: The production of MSC-EVs in a 3D bioreactor system under hypoxic conditions resulted in increased EV concentration and purity. This system could be especially useful in screening culture conditions for the production of 3D-derived MSC-EVs

    Genomewide homozygosity mapping and molecular analysis of a candidate gene located on 22q13 (fibulin-1) in a previously undescribed vitreoretinal dystrophy

    Full text link
    OBJECTIVES To localize the gene that causes an autosomal recessively inherited vitreoretinal dystrophy that has not been described, to our knowledge, and to analyze a candidate gene mapped to 22q13 (fibulin-1 [FBLN1]). METHODS Homozygosity mapping with 500 microsatellite markers spread over the whole genome (mean distance, 7.2 centimorgans [cM]) and mutation analysis of the complete coding region of FBLN1. RESULTS Homozygosity for all analyzed markers was found in the 4 affected siblings in a region on chromosome 22 encompassing 12 cM from D22S444 (centromeric) to D22S1170 (telomeric). Lod scores were between 0.017 and 2.36 (theta = 0). A mutation analysis of the complete coding region of FBLN1, which encodes interacting extracellular matrix proteins, revealed 4 previously undescribed single nucleotide polymorphisms. CONCLUSIONS A genomewide homozygosity mapping analysis supported the hypothesis that the gene responsible for a unique vitreoretinal dystrophy is located on chromosome 22q13. No obviously pathogenic mutation was found in the candidate gene, FBLN1

    (Tissue) P Systems with Vesicles of Multisets

    Full text link
    We consider tissue P systems working on vesicles of multisets with the very simple operations of insertion, deletion, and substitution of single objects. With the whole multiset being enclosed in a vesicle, sending it to a target cell can be indicated in those simple rules working on the multiset. As derivation modes we consider the sequential mode, where exactly one rule is applied in a derivation step, and the set maximal mode, where in each derivation step a non-extendable set of rules is applied. With the set maximal mode, computational completeness can already be obtained with tissue P systems having a tree structure, whereas tissue P systems even with an arbitrary communication structure are not computationally complete when working in the sequential mode. Adding polarizations (-1, 0, 1 are sufficient) allows for obtaining computational completeness even for tissue P systems working in the sequential mode.Comment: In Proceedings AFL 2017, arXiv:1708.0622

    Long-term efficacy and safety of nusinersen in adults with 5q spinal muscular atrophy: a prospective European multinational observational study

    Get PDF
    Background Evidence for the efficacy of nusinersen in adults with 5q-associated spinal muscular atrophy (SMA) has been demonstrated up to a period of 16 months in relatively large cohorts but whereas patients reach a plateau over time is still to be demonstrated. We investigated the efficacy and safety of nusinersen in adults with SMA over 38 months, the longest time period to date in a large cohort of patients from multiple clinical sites. Methods Our prospective, observational study included adult patients with SMA from Germany, Switzerland, and Austria (July 2017 to May 2022). All participants had genetically-confirmed, 5q-associated SMA and were treated with nusinersen according to the label. The total Hammersmith Functional Motor Scale Expanded (HFMSE) and Revised Upper Limb Module (RULM) scores, and 6-min walk test (6 MWT; metres), were recorded at baseline and 14, 26, and 38 months after treatment initiation, and pre and post values were compared. Adverse events were also recorded. Findings Overall, 389 patients were screened for eligibility and 237 were included. There were significant increases in all outcome measures compared with baseline, including mean HFMSE scores at 14 months (mean difference 1.72 [95% CI 1.19–2.25]), 26 months (1.20 [95% CI 0.48–1.91]), and 38 months (1.52 [95% CI 0.74–2.30]); mean RULM scores at 14 months (mean difference 0.75 [95% CI 0.43–1.07]), 26 months (mean difference 0.65 [95% CI 0.27–1.03]), and 38 months (mean difference 0.72 [95% CI 0.25–1.18]), and 6 MWT at 14 months (mean difference 30.86 m [95% CI 18.34–43.38]), 26 months (mean difference 29.26 m [95% CI 14.87–43.65]), and 38 months (mean difference 32.20 m [95% CI 10.32–54.09]). No new safety signals were identified. Interpretation Our prospective, observational, long-term (38 months) data provides further real-world evidence for the continuous efficacy and safety of nusinersen in a large proportion of adult patients with SMA. Funding Financial support for the registry from Biogen, Novartis and Roche

    Intestinal B-cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling

    Get PDF
    BACKGROUND & AIMS The progression of nonalcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH diets (for example, choline-deficient high-fat diet, CD-HFD) or chow diet for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and ÎŒMT mice (containing B cells only in the gastrointestinal tract) were fed a CD-HFD, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with NAFL, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and scRNA-Seq analysis were performed in liver and gastrointestinal tissue for immune cells in mice and humans. RESULTS Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen-specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B-cells and showed a positive correlation between IgA levels and activated FcRÎł+ hepatic myeloid cells as well extent of liver fibrosis. CONCLUSIONS Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for treating NASH. IMPACT AND IMPLICATIONS Nonalcoholic steatohepatitis (NASH) is a chronic inflammatory condition on the rise and can lead to hepatocellular carcinoma (HCC), the 3rd most common cause of cancer-related death worldwide. Currently, there is no effective treatment for this progressive disease that correlates with a marked risk of HCC mortality and carries a substantial healthcare burden. To date, among all the solid tumours, especially in HCC, the incidence and mortality rates are almost the same, making it crucial to find curative treatments for chronic diseases, such as NASH, which highly predispose to tumorigenesis. We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we could show that the absence of B cells prevented HCC development. B-cell intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets in combinatorial NASH therapies against inflammation and fibrosis

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    • 

    corecore