362 research outputs found
A Study on Phase-Changing Materials for Controllable Stiffness in Robotic Joints
This paper studies the viability of using a class of phase-changing materials for the design of controlled variable stiffness robotic joints which enable the design of robots that can operate in confined spaces. In such environments, robots need to be able to navigate in proximity or while in contact with their environment to reach one or more manipulated target. Joints with controllable stiffness can substantially enhance functionality of this class of robots where relatively higher joint stiffness is required to support the robot weight against gravity and low stiffness is desired when operating in complex or delicate environments. The research work presented in this paper focuses on examining thermorheological fluids (TRF) to design and manufacture thermally controlled variable stiffness joints. Two phase-changing materials are considered in the study: low-melting-point solder and hot-melt adhesive. Both materials are embedded in a custom designed joint fabricated using 3D printing and silicone casting. Joint stiffness was investigated with both materials and reported here. The results shows that the proposed variable stiffness joints with TRF achieve wide ranges of load-deflection ratio varying between 0.05 N/mm (when thermally activated) to about 10 N/mm (in bonding state). On average, the joint can withstand 20 times its total weight when in the bonding state. Design challenges and durability of TRF-based joints are discussed
Decay of Z into Two Light Higgs Bosons
If the standard electroweak gauge model is extended to include two or more
Higgs doublets, there may be a neutral Higgs boson which is light (with a
mass of say 10 GeV) but the coupling is suppressed so that it has so far
escaped experimental detection. However, the effective coupling is
generally unsuppressed, hence the decay of Z into two light Higgs bosons plus a
fermion-antifermion pair may have an observable branching fraction, especially
if decays invisibly as for example in the recently proposed doublet Majoron
model.Comment: 10 pages, LaTex, figures available upon request to
[email protected]
Spontaneous baryogenesis in flat directions
We discuss a spontaneous baryogenesis mechanism in flat directions. After
identifying the Nambu-Goldstone mode which derivatively couples to the
associated (1) current and rotates due to the A-term, we show that
spontaneous baryogenesis can be naturally realized in the context of the flat
direction. As applications, we discuss two scenarios of baryogenesis in detail.
One is baryogenesis in a flat direction with a vanishing charge,
especially, with neither baryon nor lepton charge, which was recently proposed
by Chiba and the present authors. The other is a baryogenesis scenario
compatible with a large lepton asymmetry.Comment: 10 pages, no figure, the version accepted to Phys. Rev. D; a few
explanatory comments are adde
The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos
We implement the seesaw mechanism in the 3-3-1 model with right-handed
neutrinos. This is accomplished by the introduction of a scalar sextet into the
model and the spontaneous violation of the lepton number. We identify the
Majoron as a singlet under symmetry, which makes it
safe under the current bounds imposed by electroweak data. The main result of
this work is that the seesaw mechanism works already at TeV scale with the
outcome that the right-handed neutrino masses lie in the electroweak scale, in
the range from MeV to tens of GeV. This window provides a great opportunity to
test their appearance at current detectors, though when we contrast our results
with some previous analysis concerning detection sensitivity at LHC, we
conclude that further work is needed in order to validate this search.Comment: about 13 pages, no figure
Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes
© 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe
FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells
Family with sequence similarity (FAM46) proteins are newly identified metazoan-specific poly(A) polymerases (PAPs). Although predicted as Gld-2-like eukaryotic non-canonical PAPs, the detailed architecture of FAM46 proteins is still unclear. Exact biological functions for most of FAM46 proteins also remain largely unknown. Here, we report the first crystal structure of a FAM46 protein, FAM46B. FAM46B is composed of a prominently larger N-terminal catalytic domain as compared to known eukaryotic PAPs, and a C-terminal helical domain. FAM46B resembles prokaryotic PAP/CCA-adding enzymes in overall folding as well as certain inter-domain connections, which distinguishes FAM46B from other eukaryotic non-canonical PAPs. Biochemical analysis reveals that FAM46B is an active PAP, and prefers adenosine-rich substrate RNAs. FAM46B is uniquely and highly expressed in human pre-implantation embryos and pluripotent stem cells, but sharply down-regulated following differentiation. FAM46B is localized to both cell nucleus and cytosol, and is indispensable for the viability of human embryonic stem cells. Knock-out of FAM46B is lethal. Knock-down of FAM46B induces apoptosis and restricts protein synthesis. The identification of the bacterial-like FAM46B, as a pluripotent stem cell-specific PAP involved in the maintenance of translational efficiency, provides important clues for further functional studies of this PAP in the early embryonic development of high eukaryotes
Planck scale effects in neutrino physics
We study the phenomenology and cosmology of the Majoron (flavon) models of
three active and one inert neutrino paying special attention to the possible
(almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton
charge. Using Planck scale physics effects which provide the breaking of the
lepton charge, we show how in this picture one can incorporate the solutions to
some of the central issues in neutrino physics such as the solar and
atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These
gravitational effects induce tiny Majorana mass terms for neutrinos and
considerable masses for flavons. The cosmological demand for the sufficiently
fast decay of flavons implies a lower limit on the electron neutrino mass in
the range of 0.1-1 eV.Comment: 24 pages, 1 figure (not included but available upon request), LaTex,
IC/92/196, SISSA-140/92/EP, LMU-09/9
within and beyond the Standard Model
We revisit (with and ) within
the Standard Model (SM). The electro-magnetic contributions are given in
color-singlet model with non-vanishing lepton masses at the leading order of
. Numerically, the branching ratios of
predicted within the SM are so small that such decays are barely possible to be
detected at future BESIII and SuperB experiments, but may be possible to be
observed at the LHC. We investigate in Type-II 2HDM
with large , and in the Randall-Sundrum
model, to see their chance to be observed in future experiments.Comment: 11 pages, 8 figures. To match the published versio
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
- …