616 research outputs found

    Prenatal Stress and Balance of the Child's Cardiac Autonomic Nervous System at Age 5-6 Years

    Get PDF
    Objective: Autonomic nervous system (ANS) misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. Methods: Mothers from a prospective birth cohort (ABCD study) filled out a questionnaire at gestational week 16 [IQR 12– 20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80 th percentiles). Indicators of cardiac ANS in the offspring at age 5–6 years are: pre-ejection period (PEP), heart rate (HR), respiratory sinus arrhythmia (RSA) and cardiac autonomic balance (CAB), measured with electrocardiography and impedance cardiography in resting supine and sitting positions. Results: 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p0.17).AccumulationofmaternalstresswasalsonotassociatedwithHR,PEP,RSAandCAB(p0.17). Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p0.07). Conclusion: Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac AN

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    DNA methylation in the promoter region of the p16 (CDKN2/MTS-1/INK4A) gene in human breast tumours

    Get PDF
    The p16 (CDKN2/MTS-1/INK4A) gene is one of several tumour-suppressor genes that have been shown to be inactivated by DNA methylation in various human cancers including breast tumours. We have used bisulphite genomic sequencing to examine the detailed sequence specificity of DNA methylation in the CpG island promoter/exon 1 region in the p16 gene in DNA from a series of human breast cancer specimens and normal human breast tissue (from reductive mammaplasty). The p16 region examined was unmethylated in the four normal human breast specimens and in four out of nine breast tumours. In the other five independent breast tumour specimens, a uniform pattern of DNA methylation was observed. Of the nine major sites of DNA methylation in the amplified region from these tumour DNAs, four were in non-CG sequences. This unusual concentration of non-CG methylation sites was not a general phenomenon present throughout the genome of these tumour cells because the methylated CpG island regions of interspersed L1 repeats had a pattern of (almost exclusively) CG methylation similar to that found in normal breast tissue DNA and in DNA from tumours with unmethylated p16 genes. These data suggest that DNA methylation of the p16 gene in some breast tumours could be the result of an active process that generates a discrete methylation pattern and, hence, could ultimately be amenable to theraputic manipulation. © 1999 Cancer Research Campaig

    Expression of Tissue factor in Adenocarcinoma and Squamous Cell Carcinoma of the Uterine Cervix: Implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer continues to be an important worldwide health problem for women. Up to 35% of patients who are diagnosed with and appropriately treated for cervical cancer will recur and treatment results are poor for recurrent disease. Given these sobering statistics, development of novel therapies for cervical cancer remains a high priority. We evaluated the expression of Tissue Factor (TF) in cervical cancer and the potential of hI-con1, an antibody-like-molecule targeted against TF, as a novel form of immunotherapy against multiple primary cervical carcinoma cell lines with squamous- and adenocarcinoma histology.</p> <p>Methods</p> <p>Because TF is a transmembrane receptor for coagulation factor VII/VIIa (fVII), in this study we evaluated the <it>in vitro </it>expression of TF in cervical carcinoma cell lines by immunohistochemistry (IHC), real time-PCR (qRT-PCR) and flow cytometry. Sensitivity to hI-con1-dependent cell-mediated-cytotoxicity (IDCC) was evaluated in 5-hrs-<sup>51</sup>chromium-release-assays against cervical cancer cell lines <it>in vitro</it>.</p> <p>Results</p> <p>Cytoplasmic and/or membrane TF expression was observed in 8 out of 8 (100%) of the tumor tissues tested by IHC and in 100% (11 out of 11) of the cervical carcinoma cell lines tested by real-time-PCR and flow cytometry but not in normal cervical keratinocytes (<it>p </it>= 0.0023 qRT-PCR; <it>p </it>= 0.0042 flow cytometry). All primary cervical cancer cell lines tested overexpressing TF, regardless of their histology, were highly sensitive to IDCC (mean killing ± SD, 56.2% ± 15.9%, range, 32.4%-76.9%, <it>p </it>< 0.001), while negligible cytotoxicity was seen in the absence of hI-con1 or in the presence of rituximab-control-antibody. Low doses of interleukin-2 further increased the cytotoxic effect induced by hI-con1 (<it>p </it>= 0.025) while human serum did not significantly decrease IDCC against cervical cancer cell lines (<it>p </it>= 0.597).</p> <p>Conclusions</p> <p>TF is highly expressed in squamous and adenocarcinoma of the uterine cervix. hI-con1 induces strong cytotoxicity against primary cervical cancer cell lines overexpressing TF and may represent a novel therapeutic agent for the treatment of cervical cancer refractory to standard treatment modalities.</p

    Identification of rare de novo epigenetic variations in congenital disorders

    Get PDF
    Certain human traits such as neurodevelopmental disorders (NDs) and congenital anomalies (CAs) are believed to be primarily genetic in origin. However, even after whole-genome sequencing (WGS), a substantial fraction of such disorders remain unexplained. We hypothesize that some cases of ND-CA are caused by aberrant DNA methylation leading to dysregulated genome function. Comparing DNA methylation profiles from 489 individuals with ND-CAs against 1534 controls, we identify epivariations as a frequent occurrence in the human genome. De novo epivariations are significantly enriched in cases, while RNAseq analysis shows that epivariations often have an impact on gene expression comparable to loss-of-function mutations. Additionally, we detect and replicate an enrichment of rare sequence mutations overlapping CTCF binding sites close to epivariations, providing a rationale for interpreting non-coding variation. We propose that epivariations contribute to the pathogenesis of some patients with unexplained ND-CAs, and as such likely have diagnostic relevance.The authors are grateful to the patients and families who participated in this study and to the collaborators who supported patient recruitment. This work was supported by NIH grant HG006696 and research grant 6-FY13-92 from the March of Dimes to A.J.S., grant HL098123 to B.D.G. and A.J.S., Gulbenkian Programme for Advanced Medical Education and the Portuguese Foundation for Science and Technology (SFRH/BDINT/51549/ 2011, PIC/IC/83026/2007, PIC/IC/83013/2007, SFRH/BD/90167/2012, Portugal) to P.M., F.L., and M.B., by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013) to P.M., a Beatriu de Pinos Postdoctoral Fellowship to R.S.J. (2011BP-A00515), and a Seaver Foundation fellowship to S.D.R. The views expressed are those of the authors and do not necessarily reflect those of the National Heart, Lung, and Blood Institute or the National Institutes of Health. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai.The authors are grateful to the patients and families who participated in this study and to the collaborators who supported patient recruitment. This work was supported by NIH grant HG006696 and research grant 6-FY13-92 from the March of Dimes to A.J.S., grant HL098123 to B.D.G. and A.J.S., Gulbenkian Programme for Advanced Medical Education and the Portuguese Foundation for Science and Technology (SFRH/BDINT/51549/ 2011, PIC/IC/83026/2007, PIC/IC/83013/2007, SFRH/BD/90167/2012, Portugal) to P.M., F.L., and M.B., by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013) to P.M., a Beatriu de Pinos Postdoctoral Fellowship to R.S.J. (2011BP-A00515), and a Seaver Foundation fellowship to S.D.R. The views expressed are those of the authors and do not necessarily reflect those of the National Heart, Lung, and Blood Institute or the National Institutes of Health. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai

    Twist expression promotes migration and invasion in hepatocellular carcinoma

    Get PDF
    Background: Twist, a transcription factor of the basic helix-loop-helix class, is reported to regulate cancer metastasis. It is known to induce epithelial-mesenchymal transition (EMT). In this study, we evaluated the expression of twist and its effect on cell migration in hepatocellular carcinoma (HCC). Methods: We examined twist expression using immunohistochemistry in 20 tissue samples of hepatocellular carcinoma, and assessed twist expression in HCC cell lines by RT-PCR and Western blot analysis. Ectopic twist expression was created by introducing a twist construct in the twist-negative HCC cell lines. Endogenous twist expression was blocked by twist siRNA in the twist-positive HCC cell lines. We studied EMT related markers, E-cadherin, Vimentin, and N-cadherin by Western blot analysis. Cell proliferation was measured by MTT assay, and cell migration was measured by in vitro wound healing assay. We used immunofluorescent vinculin staining to visualize focal adhesion. Results: We detected strong and intermediate twist expression in 7 of 20 tumor samples, and no significant twist expression was found in the tumor-free resection margins. In addition, we detected twist expression in HLE, HLF, and SK-Hep1 cells, but not in PLC/RPF/5, HepG2, and Huh7 cells. Ectopic twist-expressing cells demonstrated enhanced cell motility, but twist expression did not affect cell proliferation. Twist expression induced epithelial-mesenchymal transition together with related morphologic changes. Focal adhesion contact was reduced significantly in ectopic twist-expressing cells. Twist-siRNA-treated HLE, HLF, and SK-Hep1 cells demonstrated a reduction in cell migration by 50, 40 and 18%, respectively. Conclusion: Twist induces migratory effect on hepatocellular carcinoma by causing epithelial-mesenchymal transition

    Design and Organization of the Dexamethasone, Light Anesthesia and Tight Glucose Control (DeLiT) Trial: a factorial trial evaluating the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The perioperative period is characterized by an intense inflammatory response. Perioperative inflammation promotes postoperative morbidity and increases mortality. Blunting the inflammatory response to surgical trauma might thus improve perioperative outcomes. We are studying three interventions that potentially modulate perioperative inflammation: corticosteroids, tight glucose control, and light anesthesia.</p> <p>Methods/Design</p> <p>The DeLiT Trial is a factorial randomized single-center trial of dexamethasone vs placebo, intraoperative tight vs. conventional glucose control, and light vs deep anesthesia in patients undergoing major non-cardiac surgery. Anesthetic depth will be estimated with Bispectral Index (BIS) monitoring (Aspect medical, Newton, MA). The primary outcome is a composite of major postoperative morbidity including myocardial infarction, stroke, sepsis, and 30-day mortality. C-reactive protein, a measure of the inflammatory response, will be evaluated as a secondary outcome. One-year all-cause mortality as well as post-operative delirium will be additional secondary outcomes. We will enroll up to 970 patients which will provide 90% power to detect a 40% reduction in the primary outcome, including interim analyses for efficacy and futility at 25%, 50% and 75% enrollment.</p> <p>Discussion</p> <p>The DeLiT trial started in February 2007. We expect to reach our second interim analysis point in 2010. This large randomized controlled trial will provide a reliable assessment of the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery. The factorial design will enable us to simultaneously study the effects of the three interventions in the same population, both individually and in different combinations. Such a design is an economically efficient way to study the three interventions in one clinical trial vs three.</p> <p>Trial registration</p> <p><b>This trial is registered at </b>Clinicaltrials.gov <b>#</b>: NTC00433251</p
    corecore