521 research outputs found

    Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960

    Get PDF
    BACKGROUND: Typically, lifetime risk is calculated by the period method using current risks at different ages. Here, we estimate the probability of being diagnosed with cancer for individuals born in a given year, by estimating future risks as the cohort ages. METHODS: We estimated the lifetime risk of cancer in Britain separately for men and women born in each year from 1930 to 1960. We projected rates of all cancers (excluding non-melanoma skin cancer) and of all cancer deaths forwards using a flexible age-period-cohort model and backwards using age-specific extrapolation. The sensitivity of the estimated lifetime risk to the method of projection was explored. RESULTS: The lifetime risk of cancer increased from 38.5% for men born in 1930 to 53.5% for men born in 1960. For women it increased from 36.7 to 47.5%. Results are robust to different models for projections of cancer rates. CONCLUSIONS: The lifetime risk of cancer for people born since 1960 is >50%. Over half of people who are currently adults under the age of 65 years will be diagnosed with cancer at some point in their lifetime

    Screening of DUB activity and specificity by MALDI-TOF mass spectrometry

    Get PDF
    Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analyzing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAMM DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs

    Prediction of Promiscuous P-Glycoprotein Inhibition Using a Novel Machine Learning Scheme

    Get PDF
    BACKGROUND: P-glycoprotein (P-gp) is an ATP-dependent membrane transporter that plays a pivotal role in eliminating xenobiotics by active extrusion of xenobiotics from the cell. Multidrug resistance (MDR) is highly associated with the over-expression of P-gp by cells, resulting in increased efflux of chemotherapeutical agents and reduction of intracellular drug accumulation. It is of clinical importance to develop a P-gp inhibition predictive model in the process of drug discovery and development. METHODOLOGY/PRINCIPAL FINDINGS: An in silico model was derived to predict the inhibition of P-gp using the newly invented pharmacophore ensemble/support vector machine (PhE/SVM) scheme based on the data compiled from the literature. The predictions by the PhE/SVM model were found to be in good agreement with the observed values for those structurally diverse molecules in the training set (n = 31, r(2) = 0.89, q(2) = 0.86, RMSE = 0.40, s = 0.28), the test set (n = 88, r(2) = 0.87, RMSE = 0.39, s = 0.25) and the outlier set (n = 11, r(2) = 0.96, RMSE = 0.10, s = 0.05). The generated PhE/SVM model also showed high accuracy when subjected to those validation criteria generally adopted to gauge the predictivity of a theoretical model. CONCLUSIONS/SIGNIFICANCE: This accurate, fast and robust PhE/SVM model that can take into account the promiscuous nature of P-gp can be applied to predict the P-gp inhibition of structurally diverse compounds that otherwise cannot be done by any other methods in a high-throughput fashion to facilitate drug discovery and development by designing drug candidates with better metabolism profile

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Addressing preference heterogeneity in public health policy by combining Cluster Analysis and Multi-Criteria Decision Analysis: Proof of Method.

    Get PDF
    The use of subgroups based on biological-clinical and socio-demographic variables to deal with population heterogeneity is well-established in public policy. The use of subgroups based on preferences is rare, except when religion based, and controversial. If it were decided to treat subgroup preferences as valid determinants of public policy, a transparent analytical procedure is needed. In this proof of method study we show how public preferences could be incorporated into policy decisions in a way that respects both the multi-criterial nature of those decisions, and the heterogeneity of the population in relation to the importance assigned to relevant criteria. It involves combining Cluster Analysis (CA), to generate the subgroup sets of preferences, with Multi-Criteria Decision Analysis (MCDA), to provide the policy framework into which the clustered preferences are entered. We employ three techniques of CA to demonstrate that not only do different techniques produce different clusters, but that choosing among techniques (as well as developing the MCDA structure) is an important task to be undertaken in implementing the approach outlined in any specific policy context. Data for the illustrative, not substantive, application are from a Randomized Controlled Trial of online decision aids for Australian men aged 40-69 years considering Prostate-specific Antigen testing for prostate cancer. We show that such analyses can provide policy-makers with insights into the criterion-specific needs of different subgroups. Implementing CA and MCDA in combination to assist in the development of policies on important health and community issues such as drug coverage, reimbursement, and screening programs, poses major challenges -conceptual, methodological, ethical-political, and practical - but most are exposed by the techniques, not created by them

    Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo

    Get PDF
    Using alternative splicing reporters we have previously observed mesenchymal epithelial transitions in Dunning AT3 rat prostate tumors. We demonstrate here that the Dunning DT and AT3 cells, which express epithelial and mesenchymal markers, respectively, represent an excellent model to study epithelial transitions since these cells recapitulate gene expression profiles observed during human prostate cancer progression. In this manuscript we also present the development of two new tools to study the epithelial transitions by imaging alternative splicing decisions: a bichromatic fluorescence reporter to evaluate epithelial transitions in culture and in vivo, and a luciferase reporter to visualize the distribution of mesenchymal epithelial transitions in vivo

    Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems

    Get PDF
    The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of  80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency

    Multiway modeling and analysis in stem cell systems biology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells.</p> <p>Results</p> <p>We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate.</p> <p>Conclusion</p> <p>Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models.</p

    Digital health behaviour change interventions targeting physical activity and diet in cancer survivors: a systematic review and meta-analysis

    Get PDF
    Purpose: The number of cancer survivors has risen substantially due to improvements in early diagnosis and treatment. Health behaviours such as physical activity (PA) and diet can reduce recurrence and mortality, and alleviate negative consequences of cancer and treatments. Digital behaviour change interventions (DBCIs) have the potential to reach large numbers of cancer survivors. Methods: We conducted a systematic review and meta-analyses of relevant studies identified by a search of Medline, EMBASE, PubMed and CINAHL. Studies which assessed a DBCI with measures of PA, diet and/or sedentary behaviour were included. Results: 15 studies were identified. Random effects meta-analyses showed significant improvements in moderate-vigorous PA (7 studies; mean difference (MD) = 41 minutes per week; 95% CI: 12, 71) and body mass index (BMI)/weight (standardised mean difference (SMD) = -0.23; 95% CI: -0.41, -0.05). There was a trend toward significance for reduced fatigue and no significant change in cancer-specific quality of life (QoL). Narrative synthesis revealed mixed evidence for effects on diet, generic QoL and self-efficacy and no evidence of an effect on mental health. Two studies suggested improved sleep quality. Conclusions: DBCIs may improve PA and BMI among cancer survivors and there is mixed evidence for diet. The number of included studies is small and risk of bias and heterogeneity was high. Future research should address these limitations with large, high-quality RCTs, with objective measures of PA and sedentary time. Implications for cancer survivors: Digital technologies offer a promising approach to encourage health behaviour change among cancer survivors
    corecore