2,180 research outputs found

    Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae)

    Get PDF
    Background and AimsArachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. MethodsArachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Key Results Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Conclusions Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern

    Recurrent Acute Pancreatitis in a Patient with Type IIb hyperlipoproteinemia: A Case Report and Review of the Literature in Korea

    Get PDF
    Hyperlipidemia is a rare cause of pancreatitis. It has been believed that free fatty acids released from hydrolyzed serum chylomicrons or triglycerides and chylomicrons induce hyperlipidemic pancreatitis by damaging acinar cells and capillaries. Type I, IV or V hyperlipidemic (Fredrickson's classification) pancreatitides have distinctive features of increased and heightened serum chylomicron and triglyceride levels. In contrast, type IIb hyperlipidemia usually doesn't have increased chylomicrons. It is a dominant inherited genetic disorder and doesn't manifest the subjective symptom before combining vascular complications such as coronary artery disease. Only a few cases of type IIb hyperlipidemic pancreatitis have been reported. We experienced a male patient with recurrent hyperlipidemic pancreatitis combined with type IIb hyperlipidemia. We present the case report and a review of the literature of hyperlipidemic pancreatitis, especially cases in Korea

    Male predominance of pneumonia and hospitalization in pandemic influenza A (H1N1) 2009 infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pandemic influenza A (H1N1) disproportionately affects different age groups. The purpose of the current study was to describe the age and gender difference of pandemic influenza A (H1N1) cases that lead to pneumonia, hospitalization or ICU admission.</p> <p>Methods</p> <p>Data were collected retrospectively between May 2009 and December 2009. All of the diagnoses of H1N1 were confirmed by real-time reverse-transcription polymerase chain reaction (RT-PCR).</p> <p>Results</p> <p>During the study period there were 3402 cases of RT-PCR positive H1N1, among which 1812 were males and 1626 were adults (> 15 years of age). 6% (206/3402) of patients required hospitalization, 3.6% (122/3402) had infiltrates on chest radiographs, and 0.70% (24/3402) were admitted to intensive care unit (ICU). The overall fatality rate was 0.1% (4/3402). The rate of hospitalization was sharply increased in patients ≥ 50 years of age especially in male. Out of 122 pneumonia patients, 68.8% (84 patients) were male. Among the patients admitted to the ICU, 70.8% (17 patients) were male. Approximately 1 of 10 H1N1-infected patients admitted to the ICU were ≥ 70 years of age.</p> <p>Conclusions</p> <p>Among the confirmed cases of H1N1, the ICU admission rate was < 1% and the case fatality rate was 0.1%. Male had a significantly higher rate of pneumonia and hospital admission. These findings should be taken into consideration when developing vaccination and treatment strategies.</p

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Best Treatment Option for Patients With Refractory Aggressive B-Cell Lymphoma in the CAR-T Cell Era: Real-World Evidence From GELTAMO/GETH Spanish Groups

    Full text link
    Real-world evidence comparing the efficacy of chimeric antigen receptor (CAR) T-cell therapy against that of the previous standard of care (SOC) for refractory large B-cell lymphoma (LBCL) is scarce. We retrospectively collected data from patients with LBCL according to SCHOLAR-1 criteria treated with commercial CAR T-cell therapy in Spain (204 patients included and 192 treated, 101 with axicabtagene ciloleucel [axi-cel], and 91 with tisagenlecleucel [tisa-cel]) and compared the results with a historical refractory population of patients (n = 81) obtained from the GELTAMO-IPI study. We observed superior efficacy for CAR-T therapy (for both axi-cel and tisa-cel) over pSOC, with longer progression-free survival (PFS) (median of 5.6 vs. 4-6 months, p <= 0.001) and overall survival (OS) (median of 15 vs. 8 months, p < 0.001), independently of other prognostic factors (HR: 0.59 (95% CI: 0.44-0.80); p < 0.001] for PFS, and 0.45 [(95% CI: 0.31-0.64)] for OS). Within the CAR-T cohort, axi-cel showed longer PFS (median of 7.3 versus 2.8 months, respectively, p = 0.027) and OS (58% versus 42% at 12 months, respectively, p = 0.048) than tisa-cel. These differences were maintained in the multivariable analysis. On the other hand, axi-cel was independently associated with a higher risk of severe cytokine release syndrome and neurotoxicity. Our results suggest that the efficacy of CAR-T cell therapy is superior to pSOC in the real-world setting. Furthermore, axi-cel could be superior in efficacy to tisa-cel, although more toxic, in this group of refractory patients according to SCHOLAR-1 criteria

    Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota

    Get PDF
    The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques

    Get PDF
    Background: An individual’s microbiome changes over the course of its lifetime, especially during infancy, and again in old age. Confounding factors such as diet and healthcare make it difficult to disentangle the interactions between age, health, and microbial changes in humans. Animal models present an excellent opportunity to study age- and sex-linked variation in the microbiome, but captivity is known to influence animal microbial abundance and composition, while studies of free-ranging animals are typically limited to studies of the fecal microbiome using samples collected non-invasively. Here, we analyze a large dataset of oral, rectal, and genital swabs collected from 105 free-ranging rhesus macaques (Macaca mulatta, aged 1 month-26 years), comprising one entire social group, from the island of Cayo Santiago, Puerto Rico. We sequenced 16S V4 rRNA amplicons for all samples. Results: Infant gut microbial communities had significantly higher relative abundances of Bifidobacterium and Bacteroides and lower abundances of Ruminococcus, Fibrobacter, and Treponema compared to older age groups, consistent with a diet high in milk rather than solid foods. The genital microbiome varied widely between males and females in beta-diversity, taxonomic composition, and predicted functional profiles. Interestingly, only penile, but not vaginal, microbiomes exhibited distinct age-related changes in microbial beta-diversity, taxonomic composition, and predicted functions. Oral microbiome composition was associated with age, and was most distinctive between infants and other age classes. Conclusions: Across all three body regions, with notable exceptions in the penile microbiome, while infants were distinctly different from other age groups, microbiomes of adults were relatively invariant, even in advanced age. While vaginal microbiomes were exceptionally stable, penile microbiomes were quite variable, especially at the onset of reproductive age. Relative invariance among adults, including elderly individuals, is contrary to findings in humans and mice. We discuss potential explanations for this observation, including that age-related microbiome variation seen in humans may be related to changes in diet and lifestyle. 4_dARqKdohA9mAZyu7q9YNVideo abstrac
    corecore