189 research outputs found
Thermal Inertia-Based Method for Estimating Soil Moisture
Thermal inertia is a parameter that characterizes a property of soil that is defined as the square root of the product of the volumetric heat capacity and thermal conductivity. Both properties increase as soil moisture increases. Therefore, soil moisture can be inversely determined using thermal inertia if a relationship between the parameters is obtained in advance. In this chapter, methods for estimating surface soil moisture using thermal inertia are comprehensively reviewed, with emphases on the followings: How thermal inertia is retrieved accurately from a surface heat balance model, and how it is accurately converted to surface soil moisture. In addition, the advantages and disadvantages of the thermal inertia methods are discussed and compared to microwave-based methods, such as spatial resolution and the sky conditions. Precise and accurate data from earth observing satellites are indispensable for estimating the spatial distribution of thermal inertia at a high resolution. On the other hand, data assimilation methods are rapidly developing, which may be competitive with thermal inertia methods. Finally, applications of thermal inertia methods are described and discussed for future explorations, such as dust emission in relation to soil moisture, and estimating regional water budgets by combining other satellite data
TRAIL Team Description Paper for RoboCup@Home 2023
Our team, TRAIL, consists of AI/ML laboratory members from The University of
Tokyo. We leverage our extensive research experience in state-of-the-art
machine learning to build general-purpose in-home service robots. We previously
participated in two competitions using Human Support Robot (HSR): RoboCup@Home
Japan Open 2020 (DSPL) and World Robot Summit 2020, equivalent to RoboCup World
Tournament. Throughout the competitions, we showed that a data-driven approach
is effective for performing in-home tasks. Aiming for further development of
building a versatile and fast-adaptable system, in RoboCup @Home 2023, we unify
three technologies that have recently been evaluated as components in the
fields of deep learning and robot learning into a real household robot system.
In addition, to stimulate research all over the RoboCup@Home community, we
build a platform that manages data collected from each site belonging to the
community around the world, taking advantage of the characteristics of the
community
Neuroanatomical Circuitry Associated with Exploratory Eye Movement in Schizophrenia: A Voxel-Based Morphometric Study
Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM) dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS) and widespread gray matter density (GMD) reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA) 17], the left cuneus (BA 18), the left superior occipital cortex (BA 18/19), the left superior frontal gyrus (BA 6), the left cerebellum, the right lingual cortex (BA 17/18), the right middle occipital cortex (BA19), the right inferior temporal cortex (BA 37), the right dorsolateral prefrontal cortex (BA 46) and bilateral precentral gyri (BA 6) extending to the frontal eye fields (FEF, BA 8). To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia
Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property?
Acting as hormone mimics or antagonists in the interaction with hormone receptors, endocrine disrupting chemicals (EDCs) have the potentials of disturbing the endocrine system in sex steroid hormone-controlled organs and tissues. These effects may lead to the disruption of major regulatory mechanisms, the onset of developmental disorders, and carcinogenesis. Especially, among diverse EDCs, xenoestrogens such as bisphenol A, dioxins, and di(2-ethylhexyl)phthalate, have been shown to activate estrogen receptors (ERs) and to modulate cellular functions induced by ERs. Furthermore, they appear to be closely related with carcinogenicity in estrogen-dependant cancers, including breast, ovary, and prostate cancers. In in vivo animal models, prenatal exposure to xenoestrogens changed the development of the mouse reproductive organs and increased the susceptibility to further carcinogenic exposure and tumor occurence in adults. Unlike EDCs, which are chemically synthesized, several phytoestrogens such as genistein and resveratrol showed chemopreventive effects on specific cancers by contending with ER binding and regulating normal ER action in target tissues of mice. These results support the notion that a diet containing high levels of phytoestrogens can have protective effects on estrogen-related diseases. In spite of the diverse evidences of EDCs and phytoestrogens on causation and prevention of estrogen-dependant cancers provided in this article, there are still disputable questions about the dose-response effect of EDCs or chemopreventive potentials of phytoestrogens. As a wide range of EDCs including phytoestrogens have been remarkably increasing in the environment with the rapid growth in our industrial society and more closely affecting human and wildlife, the potential risks of EDCs in endocrine disruption and carcinogenesis are important issues and needed to be verified in detail
Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu
Lake Taihu is the third largest freshwater lake in China and is suffering from serious cyanobacterial blooms with the associated drinking water contamination by microcystin (MC) for millions of citizens. So far, most studies on MCs have been limited to two small bays, while systematic research on the whole lake is lacking. To explain the variations in MC concentrations during cyanobacterial bloom, a large-scale survey at 30 sites across the lake was conducted monthly in 2008. The health risks of MC exposure were high, especially in the northern area. Both Microcystis abundance and MC cellular quotas presented positive correlations with MC concentration in the bloom seasons, suggesting that the toxic risks during Microcystis proliferations were affected by variations in both Microcystis density and MC production per Microcystis cell. Use of a powerful predictive modeling tool named generalized additive model (GAM) helped visualize significant effects of abiotic factors related to carbon fixation and proliferation of Microcystis (conductivity, dissolved inorganic carbon (DIC), water temperature and pH) on MC cellular quotas from recruitment period of Microcystis to the bloom seasons, suggesting the possible use of these factors, in addition to Microcystis abundance, as warning signs to predict toxic events in the future. The interesting relationship between macrophytes and MC cellular quotas of Microcystis (i.e., high MC cellular quotas in the presence of macrophytes) needs further investigation
FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer
The “Goldilocks Zoneâ€? from a redox perspectiveâ€â€�Adaptive vs. deleterious responses to oxidative stress in striated muscle
Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system's position on the “hormetic curve� is governed by the source and temporality of reactive oxygen species (ROS) production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage) is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g., months to years) inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning) and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome)
- …