

Comparison of the different turbulent measuring sensors (Session 4: Problems for Flux Measurements studies)

著者	ISHIDA Sachinobu, TODA Motomu, TAMAGAWA			
	Ichiro, MIYAZAKI Shin, SUGITA Michiaki,			
	MATSUSHIMA Dai, GOTOH Junya, MIYAMOTO Tadashi,			
	IIDA Shinichi, ISHIKAW Hirohiko			
journal or	Bulletin of the Terrestrial Environment			
publication title	Research Center, the University of Tsukuba,			
	Proceedings of the International Workshop on			
	GAME-AAN/Radiation			
volume	1			
number	別冊			
page range	86-88			
year	2001-03			
URL	http://doi.org/10.15068/00147193			

Comparison of the different turbulent measuring sensors

Sachinobu ISHIDA¹, Motomu TODA², Ichiro TAMAGAWA³, Shin MIYAZAKI⁴, Michiaki SUGITA⁵, Dai MATSUSHIMA⁶, Junya GOTOH⁶, Tadashi MIYAMOTO⁷, Shinichi IIDA⁴ and Hirohiko ISHIKAWA⁸

¹Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, JAPAN

²Forestry and Forest Products Research Institute, Tsukuba 305-8687, JAPAN

³Faculty of Engineering, Gifu University, Gifu 501-1193, JAPAN

⁴Terrestrial Environment Research Center, University of Tsukuba, Tsukuba 305-8577, JAPAN

⁵Institute of Geoscience, University of Tsukuba, Tsukuba 305-8571, JAPAN

⁶Geophysical Institute, Tohoku University, Sendai 980-8578, JAPAN

⁷Master's Program in Environmental Science, University of Tsukuba, Tsukuba 305-8572, JAPAN

⁸Disaster Prevention Research Institute, Kyoto University, Uji 611-0011, JAPAN

1. Introduction

A lot of micrometeorological observations using fast response sensors have been carried out to understand the energy and water balances and CO₂ flux on different places. Though different sensors were used, comparisons of these sensors have been rarely seen. During May 14 to 25, 2000, turbulent measurement with 14 different models of sensors, most of which were used in the observations of GAME (GAWEX Asian Monsoon Experiment) projects, was carried out at Terrestrial Environment Research Center (TERC), University of Tsukuba by the Flux Enthusiast Party (authors). Our interests are the energy imbalance problem, flux footprint (or source area), methods to evaluate turbulent flux and comparison of the different turbulent measuring sensors (Toda et al., 2000). The object of this report is focused on comparison of the sensors.

2. Measurement

<u>Site</u> The measurement was made at TERC field. The surface was covered by grass (mainly *Solidago altissima*, *Andropogon virginicus* and *Equisetum arvence*). And the fetch toward the prevailing wind direction (east) was about 100m.

Sensors Table 1 lists the installed sensors to compare. Because of bad weather conditions (lightning and heavy rain), only the data obtained by 6 sensors is available. Every open path sensor measures spatial mean properties of the air between probes. The sonic anemothermometers calculates wind speed and air temperature by measuring the speed of sound, and gas analyzers calculate the gas densities by measuring the absorption of infrared radiation. The spans of all the sensors' probes are 0.12m to 0.2m except closed path sensor. Shorter span sensors enable to measure smaller eddies, but errors are larger. Closed path system pumps the object air into the sampling cells of the sensor through tube, and calculates the gas concentrations by measuring the difference

Table 1 Available installed sensors. Italics are the abbreviations used in figures.

Set No. (Logger)	Model	Sensor [Object]		Installation height	Span
1(a)	Flux-PAM type	3D Sonic anemothermometer	[Temperature]	3.33m	0.15m
2(b)	DA-600-1T**	1D Sonic anemothermometer	[Temperature]	2.55m	$0.20 \mathrm{m}$
3(p)	DA-600- $3T^{**}$	`3D Sonic anemothermometer	[Temperature]	2.52m	0.20m
1(a)	OP2***	Open path CO ₂ /H ₂ O gas analyzer	$[\mathrm{H_2O,CO_2}]$	3.30m	0.20m
2(a)	LI-7500****	Open path $\mathrm{CO_2/H_2O}$ gas analyzer	$[H_2O, CO_2]$	2.80m	0.12m
1(a)	LI-6262****	Closed path $\mathrm{CO_2/H_2O}$ gas analyze	$r [H_2O, CO_2]$	2.85m	(tube)

[Makes] *: GILL, **: KAIJO, ***: Data Design Group, ****: LI-COR

in absorption of infrared radiation passing trough the sample and reference cells. The sensors were installed at heights of 2.5 to 3.3m, and the horizontally distance of each set was around 0.3m. A sampling frequency set at 10Hz.

3. Comparison

It is difficult to compare raw data of the sensors, because each of sensors is apart standard Thus horizontally. (σ) 10 deviations in every minutes were used to make comparisons. The concentrations are converted into the densities.

Fig. 1 shows time series on σ of the available data. They agree with each other. The weather of the former two days is finer than the latter, so every σ varied more regularly in the former days.

Fig. 2 shows the relationships between σ of the sensors. This figure also shows good agreement of the sensors. The closed path LI-6262 sensor is a little smaller in both H₂O and CO₂ because of the measuring method. Slightly curving relationship between the σ of H₂O_{OP2} and H₂O_{LI-7500} is seen in this figure, maybe because only the OP2's H₂O sensor has 2nd coefficient order calibration linear). only (others have LI-7500's calibration coefficients are questionable, therefore σ of CO_{2 LI·7500} seems quite larger. However the root mean square error (RMSE) of two open path sensors seems small enough. These results mean that the sensors in this report are good to

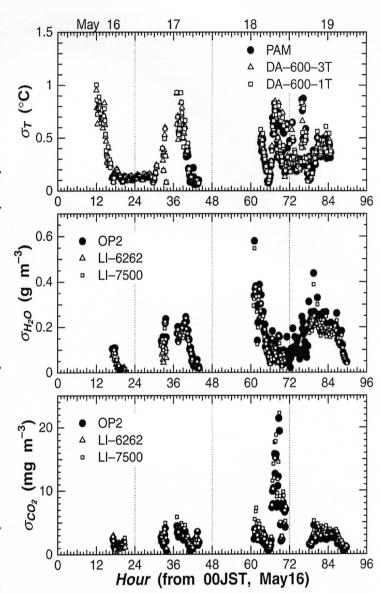


Fig. 1 Time series on standard deviations (σ) of the raw data.

use together, although not only absolute quantities but also σ calibration should be made before flux observations using different turbulent measuring sensors.

Acknowledgments The authors would like to thank KAIJO Co. and Meiwa Shoji Co. for their providing instruments, and Dr. N. Saigusa of the National Institute for Resources and Environment for her kindly lending data logger.

References

Toda, M., I. Tamagawa, S. Miyazaki, D. Matsushima, J. Gotoh, T. Miyamoto, 2000: Intensive turbulent flux observation -the flux enthusiast party-. *J. Japan Soc. Hydrol. & Water Resour.* (in Japanese), 13, 396-405.

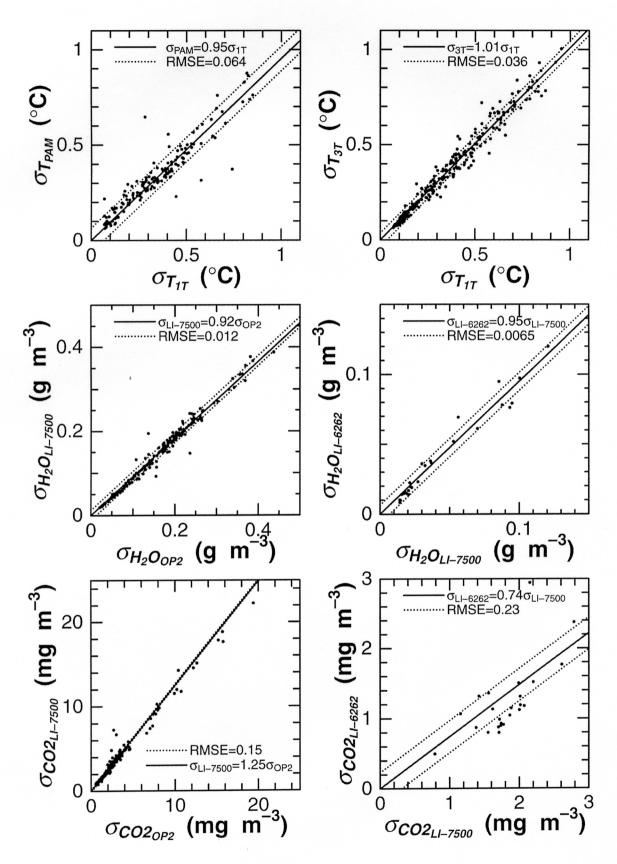


Fig. 2 Comparison of different sensors by standard deviations (σ). Solid and dotted lines indicate linear regression line and RMSE width, respectively.