142 research outputs found

    Bovine leukaemia virus and enzootic bovine leukosis

    Get PDF
    Infection of bovines with bovine leukaemia virus (BLV) manifests itself in either of two ways: 30-70% of carriers develop persistent lymphocytosis (PL), with the viral genome integrated at a large number of different sites in the DNA of the affected B-lymphocytes, without causing any chromosomal abnormalities. Only 0,1-10 % of carriers develop lymphoid tumours, which also consist of B-lymphocytes. In contrast to PL, however, they are of mono- or oligoclonal origin in terms of the integration site, which is characteristic for each tumour. All cells contain one or more copies of the viral genome, chromosomal aberrations are common and if deletions are present they are invariably found in the 5' -half of the virus DNA sequence. In both types of affected cells transcription is repressed in vivo, but transient virus production can be induced in vitro and detected by means of syncytia induction or haemagglutination. In vivo production of virus in some unknown cell is suggested by the presence of high antibody titres in infected animals, especially against the envelope glycoprotein gp51 . This can be detected by various techniques such as immunodiffusion, radioimmune assay or ELISA. Monoclonal antibodies against gp51 have revealed 8 epitopes, 3 of which are recognized by neutralizing antibodies and one by a cytolytic antibody. The BLV genome, about 9 kb in size, have been cloned, and some of the information obtained on its molecular structure and function is discussed. It codes for at least 4 non-glycosylated and 2 glycoproteins. Of special interest is the recently discovered serological relationship between some of the non-glycosylated proteins and those of the human T-cell leukaemia virus. The functional role of BLV in leukaemogenesis is largely unknown. The presence of the viral genome seems to be necessary for the maintenance of the transformed state, but not its continuous expression nor an LTR- mediated promotion of transcription of cellular genes. No oncogene is carried by the virus. Although bovine leukosis is not of major economic importance, its eradication is desirable and feasible in countries with a relatively low incidence, by means of testing and elimination. For endemic situations vaccination would be preferable, and distinct possibilities exist for the development of gp51 based vaccinesThe articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format

    Insights into mantle composition and mantle melting beneath mid-ocean ridges from postspreading volcanism on the fossil Galapagos Rise

    Get PDF
    New major and trace element and Sr, Nd, and Pb isotope data, together with 39Ar-40Ar ages for lavas from the extinct Galapagos Rise spreading center in the eastern Pacific reveal the evolution in magma compositions erupted during slowdown and after the end of active spreading at a mid-ocean ridge. Lavas erupted at 9.2 Ma, immediately prior to the end of spreading are incompatible element depleted mid-ocean ridge tholeiitic basalts, whereas progressively younger (7.5 to 5.7 Ma) postspreading lavas are increasingly alkalic, have higher concentrations of incompatible elements, higher La/Yb, K/Ti, 87Sr/86Sr, and lower 143Nd/144Nd ratios and were produced by smaller degrees of mantle melting. The large, correlated variations in trace element and isotope compositions can only be explained by melting of heterogenous mantle, in which incompatible trace element enriched lithologies preferentially contribute to smaller degree mantle melts. The effects of variable degrees of melting of heterogeneous mantle on lava compositions must be taken into account when using mid-ocean ridge basalt (MORB) to infer the conditions of melting beneath active spreading ridges. For example, the stronger “garnet signature” inferred from Sm/Nd and 143Nd/144Nd ratios for postspreading lavas from the Galapagos Rise results from a larger contribution from enriched lithologies with high La/Yb and Sm/Yb, rather than from a greater proportion of melting in the stability field of garnet peridotite. Correlations between ridge depth and Sm/Yb and fractionation-corrected Na concentrations in MORB worldwide could result from variations in mantle fertility and/or variations in the average degree of melting, rather than from large variations in mantle temperature. If more fertile mantle lithologies are preferentially melted beneath active spreading ridges, then the upper mantle may be significantly more “depleted” than is generally inferred from the compositions of MORB

    The Late Cretaceous to recent tectonic history of the Pacific Ocean basin

    Get PDF
    A vast ocean basin has spanned the region between the Americas, Asia and Australasia for well over 100 Myr, represented today by the Pacific Ocean. Its evolution includes a number of plate fragmentation and plate capture events, such as the formation of the Vancouver, Nazca, and Cocos plates from the break-up of the Farallon plate, and the incorporation of the Bellingshausen, Kula, and Aluk (Phoenix) plates, which have been studied individually, but never been synthesised into one coherent model of ocean basin evolution. Previous regional tectonic models of the Pacific typically restrict their scope to either the North or South Pacific, and global kinematic models fail to incorporate some of the complexities in the Pacific plate evolution (e.g. the independent motion of the Bellingshausen and Aluk plates), thereby limiting their usefulness for understanding tectonic events and processes occurring in the Pacific Ocean perimeter. We derive relative plate motions (with 95% uncertainties) for the Pacific-Farallon/Vancouver, Kula-Pacific, Bellingshausen-Pacific, and early Pacific-West Antarctic spreading systems, based on recent data including marine gravity anomalies, well-constrained fracture zone traces and a large compilation of magnetic anomaly identifications. We find our well-constrained relative plate motions result in a good match to the fracture zone traces and magnetic anomaly identifications in both the North and South Pacific. In conjunction with recently published and well-constrained relative plate motions for other Pacific spreading systems (e.g. Aluk-West Antarctic, Pacific-Cocos, recent Pacific-West Antarctic spreading), we explore variations in the age of the oceanic crust, seafloor spreading rates and crustal accretion and find considerable refinements have been made in the central and southern Pacific. Asymmetries in crustal accretion within the overall Pacific basin (where both flanks of the spreading system are preserved) have typically deviated less than 5% from symmetry, and large variations in crustal accretion along the southern East Pacific Rise (i.e. Pacific-Nazca/Farallon spreading) appear to be unique to this spreading corridor. Through a relative plate motion circuit, we explore the implied convergence history along the North and South Americas, where we find that the inclusion of small tectonic plate fragments such as the Aluk plate are critical for reconciling the history of convergence with onshore geological evidence. © 2015 Elsevier B.V.Australian Research Council, M.S.I. Foundatio
    corecore