39 research outputs found

    Performance, kinetic, and biodegradation pathway evaluation of anaerobic fixed film fixed bed reactor in removing phthalic acid esters from wastewater

    Get PDF
    Emerging and hazardous environmental pollutants like phthalic acid esters (PAEs) are one of the recent concerns worldwide. PAEs are considered to have diverse endocrine disrupting effects on human health. Industrial wastewater has been reported as an important environment with high concentrations of PAEs. In the present study, four short-chain PAEs including diallyl phthalate (DAP), diethyl phthalate (DEP), dimethyl phthalate (DMP), and phthalic acid (PA) were selected as a substrate for anaerobic fixed film fixed bed reactor (AnFFFBR). The process performances of AnFFFBR, and also its kinetic behavior, were evaluated to find the best eco-friendly phthalate from the biodegradability point of view. According to the results and kinetic coefficients, removing and mineralizing of DMP occurred at a higher rate than other phthalates. In optimum conditions 92.5, 84.41, and 80.39% of DMP, COD, and TOC were removed. DAP was found as the most bio-refractory phthalate. The second-order (Grau) model was selected as the best model for describing phthalates removal

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Pharmacognostic evaluation of Leucas cephalotes spreng leaves

    No full text
    Background: The reliability and integrity of traditional systems of medicine depend upon properly identified sample of drugs ready to use as therapeutic agents for safety reason of the consumers. Objective: Keeping this background in mind this study was carried out on the leaf of Leucas cephalotes, basically a folklore drug also used in Unani Medicine and Ayurveda, on pharmacognostical parameters for producing enough data for correct identification of the plant. Materials and Methods: Pharmacognostic parameters such as morphology, anatomy, macrometry, micrometry, and quantitative microscopy, observation of isolated elements, physicochemical evaluation, preliminary phytochemical evaluation and fluorescence analysis of leaf were carried out using standard methods described by Johnson, Trease and Evans, British pharmacopoeia, Jenkins et al. and Kokoshi et al. HPLC and Spectrophotometery of aqueous and methanol extracts of leaf were also made. Results: Detailed results have been shown in figures and tables. Conclusion: The study provided useful information which can effectively be used to ascertain the authenticity of the available sample of the drug. © 2012 Pharmacognosy Network Worldwide Phcog.Net

    Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge

    No full text
    The present study evaluated the performance of an integrated two-phase fixed-film baffled bioreactor for wastewater treatment with regard to its energy consumption and production. The total potential of the bioenergy recovery of the bioreactor was evaluated not only from the anaerobic wastewater treatment but also from the produced bio-wasted sludge of both phases. Statistical correlations between bio-methane production and kinetic coefficients were uncovered. Methane yields between 0.15 and 0.30 L CH4.g sCODremoved−1 were obtained during anaerobic wastewater treatment. The maximum energy recoveries from the digestion of bio-wasted sludge (sloughed biofilm) equaled 0.28 and 0.3 L CH4. g TS−1 for aerobic and anaerobic units, respectively. The Grau model was appropriate for predicting the performance of the bioreactor and the potential of bio-methane production. It was demonstrated that substrate utilization rate (Rsu) and Grau coefficient (KG) can be applied to predict the rate of methane production. Regarding the volume of treated wastewater, the energy production was in the range of 2.8–12 kWh.m−3. Moreover, the overall energy consumption of wastewater treatment was in the range of 0.32–0.79 kWh/kg sCODremoved, while the total energy production was 3.7–5.1 kWh/kg sCODremoved. Therefore, the designed bioreactor was energy positive with net energy production of 3.39–4.5 kWh/kg sCODremoved−1. The total energy requirement for both wastewater treatment and bio-wasted sludge digestion was 7–15.5% of the total energy production, and, therefore, the bioreactor is a sustainable energy process. The contribution of anaerobic wastewater treatment and anaerobic digestion of bio-wasted sludge of aerobic and anaerobic units for energy recovery as bio-methane was 53, 26, and 21%, respectively. As the bioreactor achieved more than 95% of sCOD removal and have a high bioenergy production, and since kinetic coefficients demonstrated the considerably high performance of the bioreactor, it can be of interest as an appropriate treatment process
    corecore