129 research outputs found

    Schottky Barriers on GaAs

    Get PDF
    The forward current of Schottky barriers on n-type GaAs is investigated as a function of electron concentration in the range of 8×10^17 to 8×10^18 cm^−3 at temperatures 297-4.2°K. Both vacuum-cleaved and chemically polished surfaces are used. The majority of the junctions studied are gold Schottky barriers, but tin and lead contacts are also examined. The predominant current mechanism is field emission at liquid-nitrogen temperature and below for the range of electron concentrations used. These data are in excellent quantitative agreement at 77°K with the field-emission analysis of Padovani and Stratton if one uses a two-band model for the imaginary wave number kn. At 297°K, thermionic field emission predominates, but for an electron density above 3×1018 cm−3 the field-emission mechanism with a two-band model still gives reasonable agreement

    Planck 2018 results : VI. Cosmological parameters

    Get PDF
    Correction to this article: https://doi.org/10.1051/0004-6361/201833910eWe present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 sigma level. We find good consistency with the standard spatially-flat 6-parameter Lambda CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base Lambda CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega (c)h(2)=0.120 +/- 0.001, baryon density Omega (b)h(2)=0.0224 +/- 0.0001, scalar spectral index n(s)=0.965 +/- 0.004, and optical depth tau =0.054 +/- 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 theta (*)=1.0411 +/- 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-Lambda CDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H-0=(67.4 +/- 0.5) km s(-1) Mpc(-1); matter density parameter Omega (m)=0.315 +/- 0.007; and matter fluctuation amplitude sigma (8)=0.811 +/- 0.006. We find no compelling evidence for extensions to the base-Lambda CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N-eff=2.99 +/- 0.17, in agreement with the Standard Model prediction N-eff=3.046, and find that the neutrino mass is tightly constrained to Sigma m(nu)<0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base CDM at over 2 sigma, which pulls some parameters that affect the lensing amplitude away from the Lambda CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Omega (K)=0.001 +/- 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w(0)=-1.03 +/- 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r(0.002)<0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-CDM cosmology are in excellent agreement with observations. The Planck base-Lambda CDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey's combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 sigma, tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.Peer reviewe

    Planck 2018 results: V. CMB power spectra and likelihoods

    Get PDF
    We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (ℓ   800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations

    A Multifrequency approach of the cosmological parameter estimation in presence of extragalactic point sources

    Full text link
    We present a multifrequency approach which optimizes the constraints on cosmological parameters with respect to extragalactic sources and secondary anisotropies contamination on small scales. We model with a minimal number of parameters the expected dominant contaminations in intensity, such as unresolved point sources and the thermal Sunyaev-Zeldovich effect. The model for unresolved point sources, either Poisson distributed or clustered, uses data from Planck early results. The overall amplitude of these contributions are included in a Markov Chain Monte Carlo analysis for the estimate of cosmological parameters. We show that our method is robust: as long as the main contaminants are taken into account the constraints on the cosmological parameters are unbiased regardless of the realistic uncertainties on the contaminants. We show also that the two parameters modelling unresolved points sources are not prior dominated.Comment: 17 Pages, 15 Figures, Submitted to MNRA

    Planck 2013 results. XVI. Cosmological parameters

    Get PDF
    Peer reviewe

    Planck 2013 results. I. Overview of products and scientific results

    Get PDF
    Peer reviewe

    A Measurement of Gravitational Lensing of the Cosmic Microwave Background Using SPT-3G 2018 Data

    Full text link
    We present a measurement of gravitational lensing over 1500 deg2^2 of the Southern sky using SPT-3G temperature data at 95 and 150 GHz taken in 2018. The lensing amplitude relative to a fiducial Planck 2018 Λ\LambdaCDM cosmology is found to be 1.020±0.0601.020\pm0.060, excluding instrumental and astrophysical systematic uncertainties. We conduct extensive systematic and null tests to check the robustness of the lensing measurements, and report a minimum-variance combined lensing power spectrum over angular multipoles of 50<L<200050<L<2000, which we use to constrain cosmological models. When analyzed alone and jointly with primary cosmic microwave background (CMB) spectra within the Λ\LambdaCDM model, our lensing amplitude measurements are consistent with measurements from SPT-SZ, SPTpol, ACT, and Planck. Incorporating loose priors on the baryon density and other parameters including uncertainties on a foreground bias template, we obtain a 1σ1\sigma constraint on σ8Ωm0.25=0.595±0.026\sigma_8 \Omega_{\rm m}^{0.25}=0.595 \pm 0.026 using the SPT-3G 2018 lensing data alone, where σ8\sigma_8 is a common measure of the amplitude of structure today and Ωm\Omega_{\rm m} is the matter density parameter. Combining SPT-3G 2018 lensing measurements with baryon acoustic oscillation (BAO) data, we derive parameter constraints of σ8=0.810±0.033\sigma_8 = 0.810 \pm 0.033, S8â‰ĄÏƒ8(Ωm/0.3)0.5=0.836±0.039S_8 \equiv \sigma_8(\Omega_{\rm m}/0.3)^{0.5}= 0.836 \pm 0.039, and Hubble constant H0=68.8−1.6+1.3H_0 =68.8^{+1.3}_{-1.6} km s−1^{-1} Mpc−1^{-1}. Using CMB anisotropy and lensing measurements from SPT-3G only, we provide independent constraints on the spatial curvature of ΩK=0.014−0.026+0.023\Omega_{K} = 0.014^{+0.023}_{-0.026} (95% C.L.) and the dark energy density of ΩΛ=0.722−0.026+0.031\Omega_\Lambda = 0.722^{+0.031}_{-0.026} (68% C.L.). When combining SPT-3G lensing data with SPT-3G CMB anisotropy and BAO data, we find an upper limit on the sum of the neutrino masses of ∑mÎœ<0.30\sum m_{\nu}< 0.30 eV (95% C.L.)

    Measurement of the mean central optical depth of galaxy clusters via the pairwise kinematic Sunyaev-Zel'dovich effect with SPT-3G and des

    Get PDF
    We infer the mean optical depth of a sample of optically selected galaxy clusters from the Dark Energy Survey via the pairwise kinematic Sunyaev-Zel'dovich (KSZ) effect. The pairwise KSZ signal between pairs of clusters drawn from the Dark Energy Survey Year-3 cluster catalog is detected at 4.1σ in cosmic microwave background temperature maps from two years of observations with the SPT-3G camera on the South Pole Telescope. After cuts, there are 24,580 clusters in the ∌1,400 deg2 of the southern sky observed by both experiments. We infer the mean optical depth of the cluster sample with two techniques. The optical depth inferred from the pairwise KSZ signal is Ï„ÂŻe=(2.97±0.73)×10-3, while that inferred from the thermal SZ signal is Ï„ÂŻe=(2.51±0.55stat±0.15syst)×10-3. The two measures agree at 0.6σ. We perform a suite of systematic checks to test the robustness of the analysis

    A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set

    Full text link
    We present a sample-variance-limited measurement of the temperature power spectrum (TTTT) of the cosmic microwave background (CMB) using observations of a âˆŒâ€‰âŁ1500 deg2\sim\! 1500 \,\mathrm{deg}^2 field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range 750≀ℓ<3000750 \leq \ell < 3000. We combine this TTTT measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 TT/TE/EETT/TE/EE data set. This is the first analysis to present cosmological constraints from SPT TTTT, TETE, and EEEE power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for Λ\LambdaCDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra ALA_\mathrm{L}, the effective number of neutrino species NeffN_{\mathrm{eff}}, the primordial helium abundance YPY_{\mathrm{P}}, and the baryon clumping factor due to primordial magnetic fields bb. We find that the SPT-3G 2018 T/TE/EET/TE/EE data are well fit by Λ\LambdaCDM with a probability-to-exceed of 15%15\%. For Λ\LambdaCDM, we constrain the expansion rate today to H0=68.3±1.5 km s−1 Mpc−1H_0 = 68.3 \pm 1.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}} and the combined structure growth parameter to S8=0.797±0.042S_8 = 0.797 \pm 0.042. The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within <1 σ<1\,\sigma of each other. (abridged)Comment: 35 Pages, 17 Figures, 11 Table
    • 

    corecore