2,533 research outputs found

    Electrochemical vs antibacterial characterization of ZrCN-Ag coatings

    Get PDF
    Nowadays, antibacterial properties are becoming a viable feature to be introduced in biomaterials due to the possibility of modifying the materials' surface used in medical devices in a micro/nano metric scale. As a result, it is mandatory to understand the mechanisms of the antimicrobial agents currently used and their possible failures. In this work, the antibacterial activity of ZrCNAg films is studied, taking into consideration the ability of silver nanoparticles to be dissolved when embedded into a ceramic matrix. The study focuses on the silver release evaluated by glow discharge optical emission spectroscopy and the effect of the fluid composition on this release. The results revealed a very low silver release of the films, leading to non-antibacterial activity of such materials. The silver release was found to be dependent on the electrolyte composition. NaCl (8.9 g L? 1) showed the lowest spontaneously silver ionization, while introducing the sulfates in Hanks' balanced salt solution (HBSS) such ionization is increased; finally, the proteins incorporated to the (HBSS) showed a reduction of the silver release, which also explains the low ionization in the culture medium (tryptic soy broth) that contains high quantities of proteins.This research is partially sponsored by the FEDER funds through the program COMPETE - Programa Operacional Factores de Competitividade and by the Portuguese national funds through FCT-Fundacao para a Ciencia e a Tecnologia, under the projects ANTIMICROBCOAT - PTDC/CTM/102853/2008 and in the framework of the Strategic Projects PEST-C/FIS/UI607/2011, PEST-C/EME/UI0285/2011 and SFRH/BD/80947/2011.This work has also been supported by the Ministerio de Ciencia e Innovacion of Spain through the Consolider-Ingenio 2010 Programme (CSD2008-00023) and through project RyC2007-0026

    Tooth-derived matrix granules for enhanced bone healing: chemical composition, morphological aspects, and clinical outcomes

    Get PDF
    Bone grafting has increasingly been used in surgical procedures for enhanced bone augmentation. Tooth-derived graft material has received considerable attention due to its chemical composition and autogenous source that can improve bone tissue healing. The main aim of this study was to provide a short and comprehensive review on the chemical composition, morphological aspects, and clinical outcomes of bone grafting using tooth-derived matrix granules. Dentin tissue has a chemical composition similar to that on bone tissues regarding the presence of hydroxyapatite, type I collagen, and different growth factors. Dentin-matrix granules are often processed at well-controlled size ranging from approximately 300 up to 1300 Âľm, while maintaining porosity and organic content. In addition, a dense collagen fiber network is still present after the milling and chemical treatment of dentin granules. Thus, dentin-matrix granules can improve the bone healing process considering their chemical composition, porous structure, and adequate size. However, further in vivo and in vitro studies should be performed taking into consideration different demineralization procedures, remnant organic content, porosity, and granule size.This study was supported by the Portuguse Foundation for Science and Technology (FCT) (POCI-01-0145-FEDER-031035_LaserMULTICER), SFRH/BPD/123769/ 2016, and CNPq-Brazil (CNPq/UNIVERSAL/421229/2018-7)

    XRD and FTIR analysis of Ti–Si–C–ON coatings for biomedical applications

    Get PDF
    Ti–Si–C–ON films were deposited by DC reactive magnetron sputtering using different partial pressure ratio of oxygen (pO2) and nitrogen (pN2). Compositional analysis revealed the existence of three different growth zones for the films; (I) N/Ti = 2.1 (high atomic ratio) and low oxygen content; (II) 0.76 < N/Ti < 2.1 (intermediate atomic ratio) and (III) N/Ti ≤ 0.12 (low ratio) and high oxygen content. For high N/Ti atomic ratio (N/Ti = 2.1) the XRD pattern exhibits reflections that correspond to a mixture of two different phases: a metallic-like Ti and a fcc NaCl type structure. Its electrical resistivity presents a metallic character and, consequently, has high infrared reflectivity. For the intermediate N/Ti ratio (0.76 < N/Ti < 2.1), the films crystallize in a B1-NaCl crystal structure typical for TiC0.2N0.8. Their FTIR spectra present C–N modes, besides the TiN ones, that indicate a progressive substitution of nitrogen by carbon atoms with increasing oxygen content (and lowering N/Ti ratio). For the highest oxygen content (and lower N/Ti ratio) the presence of the Ti–O–Ti stretching mode shows the formation of highly resistive Ti–O compounds consistent with the semiconductor character of this film. Biofilm formation as well as material cytotoxicity seemed to be related with the presence of the Ti

    Influence of culture media on the physical and chemical properties of Ag–TiCN coatings

    Get PDF
    The aim of this study was to verify the possible physical and chemical changes that may occur on the surface of Ag–TiCN coatings after exposure to the culture media used in microbiological and cytotoxic assays, respectively tryptic soy broth (TSB) and Dulbecco's modified eagle's medium (DMEM). After sample immersion for 24 h in the media, analyses were performed by glow discharge optical emission spectroscopy discharge radiation (GDOES), Rutherford backscattering spectroscopy (RBS) and x-ray photoelectron spectroscopy (XPS). The results of GDOES profile, RBS and XPS spectra, of samples immersed in TSB, demonstrated the formation of a thin layer of carbon, oxygen and nitrogen that could be due to the presence of proteins in TSB. After 24 h of immersion in DMEM, the results showed the formation of a thin layer of calcium phosphates on the surface, since the coatings displayed a highly oxidized surface in which calcium and phosphorus were detected. All these results suggested that the formation of a layer on the coating surface prevented the release of silver ions in concentrations that allow antibacterial activity.IC acknowledges the financial support of FCT-Fundacao para a Ciencia e a Tecnologia through the grant SFRH/BD/67022/2009. REG acknowledges support from Ramon y Cajal programme (RyC2007-0026). This research is sponsored by FEDER funds through the program COMPETE-Programa Operacional Factores de Competitividade and by national funds through FCT-Fundacao para a Ciencia e a Tecnologia in the framework of the Strategic Projects PESTC/FIS/UI607/2011, PEST-C/EME/UI0285/2011, PTDC/CTM/102853/2008.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project 'BioHealth-Biotechnology and Bioengineering approaches to improve health quality', Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. The authors also thank the project 'Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB', Ref. FCOMP-01-0124-FEDER-027462

    Structural and mechanical properties of Ti–Si–C–ON for biomedical applications

    Get PDF
    Ti–Si–C–ON films were deposited by DC reactive magnetron sputtering using different partial pressure of oxygen (pO2) and nitrogen (pN2) ratio. Compositional analysis revealed the existence of two different growth zones for the films; one zone deposited under low pO2/pN2 and another zone deposited under high pO2/pN2. The films produced under low pO2/pN2 were deposited at a lower rate and presented a fcc structure, as well as, dense and featureless morphologies. The films deposited with high pO2/pN2, consequently higher oxygen content, were deposited at a higher rate and developed an amorphous structure. The structural changes are consistent with the hardness and Young's modulus evolution, as seen by the significant reduction of the hardness and influence on the Young's modulus by increasing pO2/pN2

    Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings

    Get PDF
    Surface modification of bulk materials used in biomedical applications has become an important prerequisite for better biocompatibility. In particular, to overcome the particle generation, low-wear coatings based on carbon (nitrogen) and containing antimicrobial elements such as silver are promising candidates. Thus, the present work explores the potentialities of silver-containing carbonitride-based (Ag-TiCN) thin films prepared by direct current unbalanced reactive magnetron sputtering. The silver content in the coatings was varied from 0 to 26.7 at.% by changing the targets and the fraction of C2H2 and N2 in the gas mixture with Ar. The obtained Ag-TiCN based coatings were characterized in terms of composition and microstructure. Mechanical and tribological properties of the films were studied by nanoindentation and reciprocating pin-on disk testing in a fetal bovine serum solution, respectively. Raman, scanning electron microscope and energy dispersive X-ray analysis was carried out in the contact region after tribological tests to obtain information about the friction mechanism. The cytotoxicity of the coatings was assessed by in vitro tests using fibroblast cells. The coatings comprised a mixture of TiCxN1−x, Ag and a-C(N)x phases whose relative proportion varied depending on the Ag/Ti ratio. The mechanical, tribological and cytotoxicity properties were correlated with the chemical and phase composition. When the Ag/Ti ratios were below 0.20 (Ag contents b6.3 at.%) the films resulted harder (~18 GPa) with higher wear resistance (~10−6 mm3/Nm), showing similar friction coefficient (~0.3) and good biocompatibility.The authors are grateful to the financial support of the CRUP Institution by the project "Accao No E-1007/08", the Spanish Ministry of Science and Innovation (projects FUNCOAT CSD2008-00023 and HP2007-0116), Junta de Andalucia (project TEP 06782) and CSIC-FCT institutions (2007PT0043). The work was financially supported by Portuguese national funds through the FCT-Fundacao para a Ciencia e a Tecnologia, (project PTDC/CTM/102853/2008) and partially sponsored by FEDER funds through the program COMPETE - Programa Operacional Factores de Competitividade

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→μ+νW^+ \rightarrow \mu^+\nu and W−→μ−νW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    • …
    corecore