112 research outputs found
Pattern of gray matter volumes related to retinal thickness and its association with cognitive function in relapsingâremitting MS
Background Neurodegeneration in multiple sclerosis (MS) may be investigated in
the visual system as optical coherence tomography (OCT) and magnetic resonance
imaging (MRI) allows examining structural integrity in detail. The association
between thickness of retinal layers and focal cortical volumes beyond the
primary visual system has not been thoroughly investigated. Objective To
investigate the association between focal cortical volume and thickness of
retinal layers. Methods Fifty-four patients (relapsingâremitting MS, mean age
40.5 years, mean disease duration 7.6 years, median EDSS 2) underwent OCT and
MRI. The association between focal cortical volume and OCT measurements was
investigated with voxel-based morphometry (VBM). Patterns of association were
determined with Yeo's functional network atlas and the Harvard-Oxford cortical
atlas. We used GEE models with cortical volumes from the FreeSurfer
parcellation to confirm VBM results. Post hoc, we analyzed the association
between OCT, focal cortical volumes, and an extended neuropsychological
assessment in a subgroup of 14 patients. Results Macular retinal nerve fiber
layer (mRNFL) and ganglion cell /inner plexiform layer (GCIPL) showed a robust
association with mainly the insular cortex and the cingulate cortex. VBM
findings were confirmed with FreeSurfer volumes. The post hoc analysis
detected significant correlations between both OCT outcomes and cognition.
Conclusion Besides the primary visual system, OCT outcomes show a correlation
pattern with cortical regions that are known to be important for cognitive
performance, predominantly the insula in both hemispheres. Thus, OCT should be
further investigated as a marker for neurodegeneration in MS
Treatment of progressive multiple sclerosis: what works, what does not, and what is needed.
Disease-modifying drugs have mostly failed as treatments for progressive multiple sclerosis. Management of the disease therefore solely aims to minimise symptoms and, if possible, improve function. The degree to which this approach is based on empirical data derived from studies of progressive disease or whether treatment decisions are based on what is known about relapsing-remitting disease remains unclear. Symptoms rated as important by patients with multiple sclerosis include balance and mobility impairments, weakness, reduced cardiovascular fitness, ataxia, fatigue, bladder dysfunction, spasticity, pain, cognitive deficits, depression, and pseudobulbar affect; a comprehensive literature search shows a notable paucity of studies devoted solely to these symptoms in progressive multiple sclerosis, which translates to few proven therapeutic options in the clinic. A new strategy that can be used in future rehabilitation trials is therefore needed, with the adoption of approaches that look beyond single interventions to concurrent, potentially synergistic, treatments that maximise what remains of neural plasticity in patients with progressive multiple sclerosis
The Molecular Genetic Architecture of Self-Employment
Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable-entrepreneurship-that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (Ïg2/ÏP2= 25%, h2= 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p<10-5were tested in a replication sample (n = 3,271), but none replicated. Furthermore, a gene-based test shows that none of the genes that were previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (pâ„0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases
Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.
Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 Ă 10(-8) to P = 2.3 Ă 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
Brain connectivity and cognitive processing speed in multiple sclerosis: A systematic review
Background: Processing speed (PS) decline is the most commonly observed cognitive deficit in
people with multiple sclerosis (MS) resulting in a significant impact on quality of life. Despite its
importance, knowledge of the underlying neural substrates is lacking.
Objective: As MS is increasingly recognised as a disconnection syndrome, our aim was to carry out a
systematic literature review to clarify the relationship between PS performance and MRI measures of
structural and functional brain connectivity in people with MS.
Search methods: A literature search was carried out on PubMed and Web of Science that included
publications predating September 2017. Additional articles were added after inspection of the
reference lists of all selected papers.
Data extraction: All selected papers were categorised in three sections according to the MRI
measures investigated, independently or both. Quality assessment was carried out using a
customised set of criteria.
Results: Thirty-two articles met the inclusion criteria and were included in the review. Microstructural
integrity of the anterior corpus callosum and functional connectivity of frontal areas were more
consistently found to correlate with PS performance, though high variability of findings was observed
across studies. Several methodological flaws emerged from the reviewed literature.
Conclusions: Despite the observed trends, no definite conclusions can be drawn on the relationship
between brain connectivity and PS decline in MS given the limitations of the current literature. Future
investigations may benefit from theoretical and methodological advances to clarify how MS-related
brain damage affects patientsâ cognition
Randomised controlled trial of simvastatin treatment for autism in young children with neurofibromatosis type 1 (SANTA)
Background: Neurofibromatosis 1 (NF1) is a monogenic model for syndromic autism. Statins rescue the social and cognitive phenotype in animal knockout models, but translational trials with subjects > 8 years using cognition/ behaviour outcomes have shown mixed results. This trial breaks new ground by studying statin effects for the first time in younger children with NF1 and co-morbid autism and by using multiparametric imaging outcomes. Methods: A single-site triple-blind RCT of simvastatin vs. placebo was done. Assessment (baseline and 12-week endpoint) included peripheral MAPK assay, awake magnetic resonance imaging spectroscopy (MRS; GABA and glutamate+glutamine (Glx)), arterial spin labelling (ASL), apparent diffusion coefficient (ADC), resting state functional MRI, and autism behavioural outcomes (Aberrant Behaviour Checklist and Clinical Global Impression). Results: Thirty subjects had a mean age of 8.1 years (SD 1.8). Simvastatin was well tolerated. The amount of imaging data varied by test. Simvastatin treatment was associated with (i) increased frontal white matter MRS GABA (t(12) = â 2.12, p = .055), GABA/Glx ratio (t(12) = â 2.78, p = .016), and reduced grey nuclei Glx (ANCOVA p < 0.05, Mann-Whitney p < 0.01); (ii) increased ASL perfusion in ventral diencephalon (Mann-Whitney p < 0.01); and (iii) decreased ADC in cingulate gyrus (Mann-Whitney p < 0.01). Machine-learning classification of imaging outcomes achieved 79% (p < .05) accuracy differentiating groups at endpoint against chance level (64%, p = 0.25) at baseline. Three of 12 (25%) simvastatin cases compared to none in placebo met âclinical responderâ criteria for behavioural outcome. Conclusions: We show feasibility of peripheral MAPK assay and autism symptom measurement, but the study was not powered to test effectiveness. Multiparametric imaging suggests possible simvastatin effects in brain areas previously associated with NF1 pathophysiology and the social brain network
Heterogeneity in age-related white matter changes
White matter changes occur endemically in routine magnetic resonance imaging (MRI) scans of elderly persons. MRI appearance and histopathological correlates of white matter changes are heterogeneous. Smooth periventricular hyperintensities, including caps around the ventricular horns, periventricular lining and halos are likely to be of non-vascular origin. They relate to a disruption of the ependymal lining with subependymal widening of the extracellular space and have to be differentiated from subcortical and deep white matter abnormalities. For the latter a distinction needs to be made between punctate, early confluent and confluent types. Although punctate white matter lesions often represent widened perivascular spaces without substantial ischemic tissue damage, early confluent and confluent lesions correspond to incomplete ischemic destruction. Punctate abnormalities on MRI show a low tendency for progression, while early confluent and confluent changes progress rapidly. The causative and modifying pathways involved in the occurrence of sporadic age-related white matter changes are still incompletely understood, but recent microarray and genome-wide association approaches increased the notion of pathways that might be considered as targets for therapeutic intervention. The majority of differentially regulated transcripts in white matter lesions encode genes associated with immune function, cell cycle, proteolysis, and ion transport. Genome-wide association studies identified six SNPs mapping to a locus on chromosome 17q25 to be related to white matter lesion load in the general population. We also report first and preliminary data that demonstrate apolipoprotein E (ApoE) immunoreactivity in white matter lesions and support epidemiological findings indicating that ApoE is another factor possibly related to white matter lesion occurrence. Further insights come from modern MRI techniques, such as diffusion tensor and magnetization transfer imaging, as they provide tools for the characterization of normal-appearing brain tissue beyond what can be expected from standard MRI scans. There is a need for additional pre- and postmortem studies in humans, including these new imaging techniques
- âŠ