26 research outputs found

    Clinical Features, Cardiovascular Risk Profile, and Therapeutic Trajectories of Patients with Type 2 Diabetes Candidate for Oral Semaglutide Therapy in the Italian Specialist Care

    Get PDF
    Introduction: This study aimed to address therapeutic inertia in the management of type 2 diabetes (T2D) by investigating the potential of early treatment with oral semaglutide. Methods: A cross-sectional survey was conducted between October 2021 and April 2022 among specialists treating individuals with T2D. A scientific committee designed a data collection form covering demographics, cardiovascular risk, glucose control metrics, ongoing therapies, and physician judgments on treatment appropriateness. Participants completed anonymous patient questionnaires reflecting routine clinical encounters. The preferred therapeutic regimen for each patient was also identified. Results: The analysis was conducted on 4449 patients initiating oral semaglutide. The population had a relatively short disease duration (42%  60% of patients, and more often than sitagliptin or empagliflozin. Conclusion: The study supports the potential of early implementation of oral semaglutide as a strategy to overcome therapeutic inertia and enhance T2D management

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    CXCR3 and its ligant CXCL10 are expressed by inflammatory cells infiltrating lung allografts and mediate chemotaxis of T cells at sites of rejection

    Get PDF
    The attraction of T lymphocytes into the pulmonary parenchyma represents an essential step in mechanisms ultimately leading to lung allograft rejection. In this study we evaluated whether IP-10 (CXCL10), a chemokine that is induced by interferon-gamma and stimulates the directional migration of activated T cells, plays a role in regulating the trafficking of effector T cells during lung allograft rejection episodes. Immunohistochemical examination showed that areas characterized by acute cellular rejection (grades 1 to 4) and active obliterative bronchiolitis (chronic rejection, Ca) were infiltrated by T cells expressing CXCR3, i.e., the specific receptor for CXCL10. In parallel, T cells accumulating in the bronchoalveolar lavage of lung transplant recipients with rejection episodes were CXCR3+ and exhibited a strong in vitro migratory capability in response to CXCL10. In lung biopsies, CXCL10 was abundantly expressed by graft-infiltrating macrophages and occasionally by epithelial cells. Alveolar macrophages expressed and secreted definite levels of CXCL10 capable of inducing chemotaxis of the CXCR3+ T-cell line 300-19; the secretory capability of alveolar macrophages was up-regulated by preincubation with interferon-gamma. Interestingly, striking levels of CXCR3 ligands could be demonstrated in the fluid component of the bronchoalveolar lavage in individuals with rejection episodes. These data indicate the role of the CXCR3/CXCL10 interactions in the recruitment of lymphocytes at sites of lung rejection and provide a rationale for the use of agents that block the CXCR3/CXCL10 axis in the treatment of lung allograft rejection

    Mucocele appendicolare gigante. Caso clinico

    Get PDF
    Appendiceal mucocele is an uncommon disorder caused by accumulation of mucus within the appendiceal lumen. Mucoceles represent a heterogeneous group comprising various histopathologic lesions including mucosal hyperplasia, cystoadenomas, and cystoadenocarcinomas and prognosis is related to these subtypes. The most common symptom is pain or a palpable mass in the right lower quadrant on physical examination. The preoperative diagnosis is performed with abdominal US and confirmed with CT scan; typical CT scan image is a capsulated cystic mass with calcification of the wall while US pattern shows cystic lesion with the onion skin sign considered a specific sonographic marker for appendiceal mucocele. In conclusion a cystic mass sonographically detected with onion skin sign, in the presence of normal female reproductive organs, suggest the diagnosis of appendiceal mucocele

    Assessing mantle versus crustal sources for non-volcanic degassing along fault zones in the actively extending southern Apennines mountain belt (Italy)

    No full text
    The actively extending axial zone of the southern Apennine mountain belt of Italy is characterized by a substantial flow of non-volcanic gas to the surface. In this study, we have analyzed the correlation between the active tectonic framework of the Matese Ridge area and the high gas emissions found to the southwest, which includes large amounts of CO2 (up to 99 vol%), CH4 (up to 0.55 vol%), and He (up to 52 ppmv). We measured CO2 and CH4 fluxes of up to 34000 g d–1 and 2000 g d–1, respectively, from zones of focused degassing (gas vents and associated strong diffuse emission). This anomalously high flux of CO2 (advective plus diffusive) indicates that the study area has one of the largest non-volcanic natural emissions of CO2 ever measured on Earth. The isotope composition of C in CO2 and CH4 shows there is a dominant crustal contribution of emissions (as opposed to a source from the mantle), indicating that thermometamorphism of the buried Apulian Platform carbonates is probably the main cause of CO2 production. This process has likely been enhanced by Quaternary magmatism, which provides an additional local source of heat triggering decarbonation of Apulian Platform limestones and dolostones at depth. The advective flux is concentrated at gas vents located along active fault segments located at the western tip of a major crustal structure, the South Matese fault zone. We believe that the very high gas emission in the Matese Ridge area is the result of both the presence of a dense network of active fault strands, which provides efficient pathways for fluid flow toward the surface, and the dramatically reduced thickness of the clay-rich mélange zone acting elsewhere in the southern Apennines as a top seal overlying the buried Apulian Platform carbonates

    Assessing mantle versus crustal sources for non-volcanic degassing along fault zones in the actively extending southern Apennines mountain belt (Italy)

    No full text
    The actively extending axial zone of the southern Apennine mountain belt of Italy is characterized by a substantial flow of nonvolcanic gas to the surface. In this study, we have analyzed the correlation between the active tectonic framework of the Matese Ridge area and the high gas emissions found to the southwest, which includes large amounts of CO2 (up to 99 vol%), CH4 (up to 0.55 vol%), and He (up to 52 ppmv). We measured CO2 and CH4 fluxes of up to 34000 g d–1 and 2000 g d–1, respectively, from zones of focused degassing (gas vents and associated strong diffuse emission). This anomalously high flux of CO2 (advective plus diffusive) indicates that the study area has one of the largest nonvolcanic natural emissions of CO2 ever measured on Earth. The isotope composition of C in CO2 and CH4 shows there is a dominant crustal contribution of emissions (as opposed to a source from the mantle), indicating that thermometamorphism of the buried Apulian Platform carbonates is probably the main cause of CO2 production. This process has likely been enhanced by Quaternary magmatism, which provides an additional local source of heat triggering decarbonation of Apulian Platform limestones and dolostones at depth. The advective flux is concentrated at gas vents located along active fault segments located at the western tip of a major crustal structure, the South Matese fault zone. We believe that the very high gas emission in the Matese Ridge area is the result of both the presence of a dense network of active fault strands, which provides efficient pathways for fluid flow toward the surface, and the dramatically reduced thickness of the clay-rich mélange zone acting elsewhere in the southern Apennines as a top seal overlying the buried Apulian Platform carbonates
    corecore