162 research outputs found
Modelling of a Grade 91 power plant pressurised header weldment under ultra super-critical creep conditions
This paper is concerned with the creep-damage modelling of a Grade 91 pressurised header, which was observed to undergo in-service cracking in the weldments. A multi-axial creep damage model of Kachanov type, with a single state damage variable, has been implemented into finite element analysis to study the creep damage responses of weldments and the sub-zones i.e. the base metal (BM), weld metal (WM) and heat-affected zone (HAZ). Material properties for each weld constituent were obtained from the results of accelerated creep tests on materials extracted from the header. Predictions of crack initiation were made for sections of the stub to header welds. This analysis was also used to estimate creep failure life of the header weldment under ultra-super-critical conditions. Further, creep crack growth behaviour was predicted based on time-dependent critical damage growth. The predicted damage distributions and failure mode of the cross-weld creep test specimens were in good agreement with the reported experimental observations. The predicted damage distributions and cracking in the header correlate reasonably well with the reported industrial observations
The influence of thermal cycles on the microstructure of grade 92 steel
The microstructure in the heat-affected zone (HAZ) of welds made from the 9 wt pct chromium martensitic Grade 92 steel is complex and has not yet been completely understood. There is a lack of systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds as a function of the welding process. In this study, the microstructure in the HAZ of an as-fabricated single-pass bead-on-plate weld on a parent metal of Grade 92 steel was systematically investigated by using an extensive range
of electron and ion-microscopy-based techniques. A dilatometer was used to apply controlled thermal cycles to simulate the microstructures in the different regions of the HAZ. A wide range of microstructural properties in the simulated materials were then characterized and compared with the experimental observations from the weld HAZ. It was found that the microstructure in the HAZ of a single-pass Grade 92 steel weld can be categorized as a function of a decreasing
peak temperature reached as (1) the completely transformed (CT) region, in which the original matrix is completely reaustenitized with complete dissolution of the pre-existing secondary precipitate particles; (2) the partially transformed (PT) region, where the original matrix is partially reaustenitized along with a partial dissolution of the secondary precipitate particles from the original matrix; and (3) the overtempered (OT) region, where the pre-xisting precipitate particles coarsen. The PT region is considered to be the susceptible area for damage in the commonly reported HAZ failures in weldments constructed from these types of steels
Fractional solubility of aerosol iron : synthesis of a global-scale data set
Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to bioavailability is the proportion of aerosol iron that enters the oceanic dissolved iron pool – the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and %FeS values for ~1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including new data from the Atlantic Ocean. The global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data falling along an inverse hyperbolic trend. The large dynamic range in %FeS (0-95%) varies with FeT in a manner similar to that identified for aerosols collected in the Sargasso Sea by Sedwick et al. (2007), who posit that the trend reflects near-conservative mixing between air masses that carry lithogenic mineral dust (with high FeT and low %FeS) and non-soil-dust aerosols such as anthropogenic combustion emissions (with low FeT and high %FeS), respectively. An increasing body of empirical evidence points to the importance of aerosol source and composition in determining the fractional solubility of aerosol iron, such that anthropogenic combustion emissions appear to play a critical role in determining this parameter in the bulk marine aerosol. The robust global-scale relationship between %FeS and FeT may provide a simple heuristic method for estimating aerosol iron solubility at the regional to global scale
Genome Sequence of Fusobacterium nucleatum Subspecies Polymorphum — a Genetically Tractable Fusobacterium
Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common
Model-predicted ammonia emission from two broiler houses with different rearing systems
Ammonia (NH3) emissions from broiler production can affect human and animal health and may cause acidification and eutrophication of the surrounding environment. This study aimed to estimate ammonia emissions from broiler litter in two systems of forced ventilation, the tunnel ventilation (TV) and the dark house (DH). The experiment was carried out on eight commercial broiler houses, and the age of the birds (day, d), pH and litter temperature were recorded. Broilers were reared on built-up wood shaving litter using an average flock density of 14 bird m–2. Temperature and relative humidity inside the broiler houses were recorded in the morning during the grow-out period. A factorial experimental design was adopted, with two types of houses, four replicates and two flocks with two replicates each. A deterministic model was used to predict ammonia emissions using the litter pH and temperature, and the day of grow-out. The highest litter temperature and pH were found at 42 d of growth in both housing systems. Mean ambient air temperature and relative humidity did not differ in either system. Mean model predicted ammonia emission was higher in the DH rearing system (5200 mg NH3 m−2h−1 at 42 d) than in the TV system (2700 mg NH3m−2 h−1 at 42 d). TV presented the lowest mean litter temperature and pH at 42 d of growth. In the last week of the broilers’ grow-out cycle, estimated ammonia emissions inside DH reached 5700 mg m−2h−1 in one of the flocks. Ammonia emissions were higher inside DH, and they did not differ between flocks. Assuming a broiler market weight in Brazil of close to 2 kg, ammonia emissions were equivalent to 12 g NH3 bird-marketed−1. Model-predicted ammonia emissions provided comprehensible estimations and might be used in abatement strategies for NH3 emission
Emerging CO2 capture systems
In 2005, the IPCC SRCCS recognized the large potential for developing and scaling up a wide range of emerging CO2 capture technologies that promised to deliver lower energy penalties and cost. These included new energy conversion technologies such as chemical looping and novel capture systems based on the use of solid sorbents or membrane-based separation systems. In the last 10 years, a substantial body of scientific and technical literature on these topics has been produced from a large number of R&D projects worldwide, trying to demonstrate these concepts at increasing pilot scales, test and model the performance of key components at bench scale, investigate and develop improved functional materials, optimize the full process schemes with a view to a wide range of industrial applications, and to carry out more rigorous cost studies etc. This paper presents a general and critical review of the state of the art of these emerging CO2 capture technologies paying special attention to specific process routes that have undergone a substantial increase in technical readiness level toward the large scales required by any CO2 capture system
- …